Entanglement and entropy in multipartite systems: a useful approach

被引:0
作者
A. Bernal
J. A. Casas
J. M. Moreno
机构
[1] Universidad Autónoma de Madrid,Instituto de Física Teórica, IFT
来源
Quantum Information Processing | / 23卷
关键词
Quantum entanglement; Concurrence; Entropy;
D O I
暂无
中图分类号
学科分类号
摘要
Quantum entanglement and quantum entropy are crucial concepts in the study of multipartite quantum systems. In this work, we show how the notion of concurrence vector, re-expressed in a particularly useful form, provides new insights and computational tools for the analysis of both. In particular, using this approach for a general multipartite pure state, one can easily prove known relations in an easy way and to build up new relations between the concurrences associated with the different bipartitions. The approach is also useful to derive sufficient conditions for genuine entanglement in generic multipartite systems that are computable in polynomial time. From an entropy-of-entanglement perspective, the approach is powerful to prove properties of the Tsallis-2 entropy, such as the subadditivity, and to derive new ones, e.g., a modified version of the strong subadditivity which is always fulfilled; thanks to the purification theorem these results hold for any multipartite state, whether pure or mixed.
引用
收藏
相关论文
共 111 条
[1]  
Ekert AK(1991)Quantum cryptography based on Bell’s theorem Phys. Rev. Lett. 67 661-663
[2]  
Raussendorf R(2001)A one-way quantum computer Phys. Rev. Lett. 86 5188-5191
[3]  
Briegel HJ(1993)Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels Phys. Rev. Lett. 70 1895-1899
[4]  
Bennett CH(2004)Quantum-enhanced measurements: beating the standard quantum limit Science 306 1330-1336
[5]  
Brassard G(2005)Multipartite entanglement in quantum spin chains Phys. Rev. A 72 014301-467
[6]  
Crépeau C(2010)Quantum entanglement in photosynthetic light-harvesting complexes Nat. Phys. 6 462-75
[7]  
Jozsa R(2009)Entanglement detection Phys. Rep. 474 1-257
[8]  
Peres A(2014)Quantifying entanglement resources J. Phys. A Math. Theor. 47 424005-5025
[9]  
Wootters WK(2003)Classification of multipartite entangled states by multidimensional determinants Phys. Rev. A 67 012108-2248
[10]  
Giovannetti V(2010)Separability criteria for genuine multiparticle entanglement J. Phys. 12 053002-227