Sensitivity and wave propagation analysis of the time-fractional (3+1)-dimensional shallow water waves model

被引:6
作者
Senol, Mehmet [1 ]
Gencyigit, Mehmet [1 ]
Demirbilek, Ulviye [2 ]
Az-Zo'bi, Emad A. [3 ]
机构
[1] Nevsehir Haci Bektas Veli Univ, Dept Math, Nevsehir, Turkiye
[2] Mersin Univ, Dept Math, Mersin, Turkiye
[3] Mutah Univ, Dept Math & Stat, Al Karak, Jordan
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2024年 / 75卷 / 03期
关键词
The modified generalized Kudryashov method; Exp(- phi (xi))-expansion method; Fractional (3+1)-dimensional Korteweg-de Vries Benjamin-Bona-Mahony equation; Conformable derivative; Sensitivity; SOLITON-SOLUTIONS; BONA-MAHONY; EQUATION; KORTEWEG;
D O I
10.1007/s00033-024-02216-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study investigates the exact solutions of the time-fractional (3+1)-dimensional combined Korteweg-de Vries Benjamin-Bona-Mahony (KdV-BBM) equation. The considered model describes the long surface gravity waves of small amplitude, which portrays the two-way propagation of waves. The modified generalized Kudryashov method and the exp(- phi ( xi ))-expansion methods are employed to resolve the aforementioned issue because of their effectiveness and simplicity. For generality, the time fractional version is studied; more advanced solutions that do not exist in the literature were obtained. As a result, a variety of the exact wave solutions of the conformable (3+1)-dimensional KdV-BBM equation are obtained. The dynamical behaviors of some obtained solutions are represented with the proper parameter values. The used methods yield noteworthy results in obtaining the analytical solutions of fractional differential equations under various conditions. Besides, the sensitivity of regarding dynamical system is assessed to show the numerical stability effects.
引用
收藏
页数:15
相关论文
共 36 条
[11]   New exact solutions of Burgers' type equations with conformable derivative [J].
Cenesiz, Yucel ;
Baleanu, Dumitru ;
Kurt, Ali ;
Tasbozan, Orkun .
WAVES IN RANDOM AND COMPLEX MEDIA, 2017, 27 (01) :103-116
[12]   Extracting the exact solitons of time-fractional three coupled nonlinear Maccari's system with complex form via four different methods [J].
Chen, Zhuoxun ;
Manafian, Jalil ;
Raheel, Muhammad ;
Zafar, Asim ;
Alsaikhan, Fahad ;
Abotaleb, Mostafa .
RESULTS IN PHYSICS, 2022, 36
[13]   Derivation of optical solitons of dimensionless Fokas-Lenells equation with perturbation term using Sardar sub-equation method [J].
Cinar, Melih ;
Secer, Aydin ;
Ozisik, Muslum ;
Bayram, Mustafa .
OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (07)
[14]   Application of IBSEF Method to Chaffee-Infante Equation in (1+1) and (2+1) Dimensions [J].
Demirbilek, U. ;
Mamedov, Kh. R. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (08) :1444-1451
[15]   Optical solitons to the space-time fractional (1+1)-dimensional coupled nonlinear Schrodinger equation [J].
Esen, Alaattin ;
Sulaiman, Tukur Abdulkadir ;
Bulut, Hasan ;
Baskonus, Haci Mehmet .
OPTIK, 2018, 167 :150-156
[16]   Traveling wave solutions to the Boussinesq equation via Sardar sub-equation technique [J].
Hamood-Ur-Rahman ;
Asjad, Muhammad Imran ;
Munawar, Nayab ;
Parvaneh, Foroud ;
Muhammad, Taseer ;
Hamoud, Ahmed A. ;
Emadifar, Homan ;
Hamasalh, Faraidun K. ;
Azizi, Hooshmand ;
Khademi, Masoumeh .
AIMS MATHEMATICS, 2022, 7 (06) :11134-11149
[17]   A new generalized KdV equation: Its lump-type, complexiton and soliton solutions [J].
Hosseini, K. ;
Salahshour, S. ;
Baleanu, D. ;
Mirzazadeh, M. ;
Dehingia, K. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022, 36 (31)
[18]   The Caputo-Fabrizio time-fractional Sharma-Tasso-Olver-Burgers equation and its valid approximations [J].
Hosseini, Kamyar ;
Ilie, Mousa ;
Mirzazadeh, Mohammad ;
Baleanu, Dumitru ;
Park, Choonkil ;
Salahshour, Soheil .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2022, 74 (07)
[19]   Effect of the free parameters on the Biswas-Arshed model with a unified technique [J].
Islam, S. M. Rayhanul ;
Bashar, Md Habibul ;
Arafat, S. M. Yiasir ;
Wang, Hanfeng ;
Roshid, Md Mamunur .
CHINESE JOURNAL OF PHYSICS, 2022, 77 :2501-2519