Meyer–Neldel rule in fullerene field-effect transistors

被引:0
|
作者
Mujeeb Ullah
T. B. Singh
H. Sitter
N. S. Sariciftci
机构
[1] Johannes Kepler University Linz,Institute of Semiconductor and Solid State Physics
[2] Johannes Kepler University Linz,Linz Institute of Organic Solar Cells (LIOS), Institute of Physical Chemistry
[3] Molecular and Health Technologies,undefined
[4] CSIRO,undefined
来源
Applied Physics A | 2009年 / 97卷
关键词
73.61.Ph; 72.20.Ee; 72.80.Le; 73.20.-r; 71.38.Ht;
D O I
暂无
中图分类号
学科分类号
摘要
The temperature dependence of the field-effect mobility is investigated in vacuum evaporated C60-based organic field-effect transistors. The results show a thermally activated behavior with an activation energy that depends on the field-induced charge carrier density in the transistor channel. Upon extrapolation of the data in an Arrhenius plot we find an empirical relation, termed the Meyer–Neldel rule, which states that the mobility prefactor increases exponentially with the activation energy. Based on this analysis a characteristic temperature is extracted. The possible implications of this observation in terms of charge transport in fullerene-based field-effect transistors are discussed.
引用
收藏
页码:521 / 526
页数:5
相关论文
共 50 条
  • [1] Meyer-Neldel rule in fullerene field-effect transistors
    Ullah, Mujeeb
    Singh, T. B.
    Sitter, H.
    Sariciftci, N. S.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 97 (03): : 521 - 526
  • [2] Normal and inverse Meyer-Neldel rule in nanocrystalline pentacene field-effect transistors
    Schön, JH
    Kloc, C
    Batlogg, B
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2000, 221 (01): : R4 - R5
  • [3] Thin-film field-effect transistors: The effects of traps on the bias and temperature dependence of field-effect mobility, including the Meyer-Neldel rule
    Stallinga, P.
    Gomes, H. L.
    ORGANIC ELECTRONICS, 2006, 7 (06) : 592 - 599
  • [4] The inverted Meyer-Neldel rule in the conductance of nanostructured silicon field-effect devices
    Schropp, REI
    Meiling, H
    MICROCRYSTALLINE AND NANOCRYSTALLINE SEMICONDUCTORS-1998, 1999, 536 : 281 - 286
  • [5] THE MEYER-NELDEL RULE IN FIELD-EFFECT MEASUREMENTS AND THE MICROSCOPIC PREFACTOR OF THE CONDUCTIVITY IN A-SI-H
    SCHUMACHER, R
    THOMAS, P
    WEBER, K
    FUHS, W
    SOLID STATE COMMUNICATIONS, 1987, 62 (01) : 15 - 17
  • [6] MODEL CALCULATION ON THE MEYER-NELDEL RULE FOR THE FIELD-EFFECT CONDUCTANCE OF HYDROGENATED AMORPHOUS-SILICON
    YOON, BG
    LEE, C
    APPLIED PHYSICS LETTERS, 1987, 51 (16) : 1248 - 1250
  • [7] Meyer-Neldel rule in organic thin-film transistors
    Meijer, E.J.
    Matters, M.
    Herwig, P.T.
    de Leeuw, D.M.
    Klapwijk, T.M.
    Applied Physics Letters, 2000, 76 (23)
  • [8] The Meyer-Neldel rule in organic thin-film transistors
    Meijer, EJ
    Matters, M
    Herwig, PT
    de Leeuw, DM
    Klapwijk, TM
    APPLIED PHYSICS LETTERS, 2000, 76 (23) : 3433 - 3435
  • [9] Dependence of Meyer-Neldel energy on energetic disorder in organic field effect transistors
    Ullah, Mujeeb
    Fishchuk, I. I.
    Kadashchuk, A.
    Stadler, P.
    Pivrikas, A.
    Simbrunner, C.
    Poroshin, V. N.
    Sariciftci, N. S.
    Sitter, H.
    APPLIED PHYSICS LETTERS, 2010, 96 (21)
  • [10] Meyer-Neldel rule for charge carrier transport in fullerene devices: A comparative study
    Pivrikas, A.
    Ullah, Mujeeb
    Singh, Th. B.
    Simbrunner, C.
    Matt, G.
    Sitter, H.
    Sariciftci, N. S.
    ORGANIC ELECTRONICS, 2011, 12 (01) : 161 - 168