An hybrid soft attention based XGBoost model for classification of poikilocytosis blood cells

被引:0
作者
Prasenjit Dhar
K. Suganya Devi
Satish Kumar Satti
P. Srinivasan
机构
[1] National Institute of Technology,Medical Imaging Laboratory, Department of Computer Science and Engineering
[2] Deemed to be University,Department of Computer Science and Engineering, VFSTR
[3] National Institute of Technology,Department of Physics
来源
Evolving Systems | 2024年 / 15卷
关键词
Attention convolution neural network; Poikilocytosis; K-mean; XGBoost;
D O I
暂无
中图分类号
学科分类号
摘要
Poikilocytosis affects the human body because it causes changes in the shape of Red Blood Cells (RBCs). This aberrant shape and structure of RBCs lead to a number of health issues in our bodies. These issues include lack of oxygen, protein, nutrients, and other substances. In addition, it leads to a number of disorders such as Anemia, Thalassemia, etc. Detection and classification of such cells in Peripheral Blood Smear (PBS) is time-consuming, especially in geographically underserved regions where there is a paucity of hematologists. Hence, the deployment of deep learning for the classification of such cells reduces the workload of hematologists. In this work, a novel hybrid approach using K-mean color quantization segmented-based attention-deep Convolution Neural Network (CNN) with an Extreme Gradient Boosting (XGBoost) algorithm for classifying poikilocytosis has been proposed for detection and classification of abnormal cells.The proposed hybrid model has outperformed the lightweight CNN model and benchmark models on two data sets: one publicly accessible Chula-PIC-Lab data set and one privately collected dataset. On the Chula-PIC-Lab and CCHRC datasets, the proposed model obtains 95.38%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$95.38\%$$\end{document} and 93.43%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$93.43\%$$\end{document} of F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_1$$\end{document}-score on segmentation, 98.44%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.44\%$$\end{document} and 98.24%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.24\%$$\end{document} of accuracy on classification; 98.55%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.55\%$$\end{document} and 98.28%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.28\%$$\end{document}of F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_1$$\end{document}-score on poikilocytosis classification respectively.
引用
收藏
页码:523 / 539
页数:16
相关论文
共 89 条
[21]  
Palus H(2022)A vision transformer based approach for analysis of plasmodium vivax life cycle for malaria prediction using thin blood smear microscopic images Comput Methods Programs Biomed undefined undefined-undefined
[22]  
Goenka N(2021)Convxgb: a new deep learning model for classification problems based on CNN and XGBoost Nucl Eng Technol undefined undefined-undefined
[23]  
Tiwari S(2023)Cell image instance segmentation based on polarmask using weak labels Comput Methods Programs Biomed undefined undefined-undefined
[24]  
Jiang M(2016)Cell morphology-based classification of red blood cells using holographic imaging informatics Biomed Opt Express undefined undefined-undefined
[25]  
Shao M(undefined)undefined undefined undefined undefined-undefined
[26]  
Yang X(undefined)undefined undefined undefined undefined-undefined
[27]  
He L(undefined)undefined undefined undefined undefined-undefined
[28]  
Peng T(undefined)undefined undefined undefined undefined-undefined
[29]  
Wang T(undefined)undefined undefined undefined undefined-undefined
[30]  
Ke Z(undefined)undefined undefined undefined undefined-undefined