An hybrid soft attention based XGBoost model for classification of poikilocytosis blood cells

被引:0
作者
Prasenjit Dhar
K. Suganya Devi
Satish Kumar Satti
P. Srinivasan
机构
[1] National Institute of Technology,Medical Imaging Laboratory, Department of Computer Science and Engineering
[2] Deemed to be University,Department of Computer Science and Engineering, VFSTR
[3] National Institute of Technology,Department of Physics
来源
Evolving Systems | 2024年 / 15卷
关键词
Attention convolution neural network; Poikilocytosis; K-mean; XGBoost;
D O I
暂无
中图分类号
学科分类号
摘要
Poikilocytosis affects the human body because it causes changes in the shape of Red Blood Cells (RBCs). This aberrant shape and structure of RBCs lead to a number of health issues in our bodies. These issues include lack of oxygen, protein, nutrients, and other substances. In addition, it leads to a number of disorders such as Anemia, Thalassemia, etc. Detection and classification of such cells in Peripheral Blood Smear (PBS) is time-consuming, especially in geographically underserved regions where there is a paucity of hematologists. Hence, the deployment of deep learning for the classification of such cells reduces the workload of hematologists. In this work, a novel hybrid approach using K-mean color quantization segmented-based attention-deep Convolution Neural Network (CNN) with an Extreme Gradient Boosting (XGBoost) algorithm for classifying poikilocytosis has been proposed for detection and classification of abnormal cells.The proposed hybrid model has outperformed the lightweight CNN model and benchmark models on two data sets: one publicly accessible Chula-PIC-Lab data set and one privately collected dataset. On the Chula-PIC-Lab and CCHRC datasets, the proposed model obtains 95.38%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$95.38\%$$\end{document} and 93.43%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$93.43\%$$\end{document} of F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_1$$\end{document}-score on segmentation, 98.44%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.44\%$$\end{document} and 98.24%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.24\%$$\end{document} of accuracy on classification; 98.55%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.55\%$$\end{document} and 98.28%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.28\%$$\end{document}of F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_1$$\end{document}-score on poikilocytosis classification respectively.
引用
收藏
页码:523 / 539
页数:16
相关论文
共 89 条
[11]  
Dhar P(2022)Cnn-xgboost fusion-based affective state recognition using eeg spectrogram image analysis Sci Rep 12 645-686
[12]  
Suganya Devi K(2017)Imagenet classification with deep convolutional neural networks Commun ACM 11 443-531
[13]  
Satti SK(2014)Cell morphology based classification for red cells in blood smear images Pattern Recogn Lett 9 751-2399
[14]  
Srinivasan P(2020)Fault detection in smart grids with time-varying distributed generation using wavelet energy and evolving neural networks Evol Syst 79 34209-undefined
[15]  
Dhar P(2021)Biofeedback: E-health prediction based on evolving fuzzy neural network and wearable technologies Evol Syst 12 18101-undefined
[16]  
Kothandapani SD(2020)Evolving fuzzy-neural paradigm applied to the recognition and removal of artefactual beats in continuous seismocardiogram recordings Evol Syst 13 667-undefined
[17]  
Satti SK(2019)A novel protein subcellular localization method with CNN-XGBoost model for Alzheimer’s disease Front Genet 224 522-undefined
[18]  
Padmanabhan S(2020)Semi-supervised learning with deep convolutional generative adversarial networks for canine red blood cells morphology classification Multimed Tools Appl 53 2385-undefined
[19]  
Frackiewicz M(2022)Data augmentation with improved regularisation and sampling for imbalanced blood cell image classification Sci Rep 231 undefined-undefined
[20]  
Mandrella A(2022)Evolving fuzzy predictor with multivariable gaussian participatory learning and multi-innovations recursive weighted least squares: efmi Evol Syst 7 undefined-undefined