An hybrid soft attention based XGBoost model for classification of poikilocytosis blood cells

被引:0
作者
Prasenjit Dhar
K. Suganya Devi
Satish Kumar Satti
P. Srinivasan
机构
[1] National Institute of Technology,Medical Imaging Laboratory, Department of Computer Science and Engineering
[2] Deemed to be University,Department of Computer Science and Engineering, VFSTR
[3] National Institute of Technology,Department of Physics
来源
Evolving Systems | 2024年 / 15卷
关键词
Attention convolution neural network; Poikilocytosis; K-mean; XGBoost;
D O I
暂无
中图分类号
学科分类号
摘要
Poikilocytosis affects the human body because it causes changes in the shape of Red Blood Cells (RBCs). This aberrant shape and structure of RBCs lead to a number of health issues in our bodies. These issues include lack of oxygen, protein, nutrients, and other substances. In addition, it leads to a number of disorders such as Anemia, Thalassemia, etc. Detection and classification of such cells in Peripheral Blood Smear (PBS) is time-consuming, especially in geographically underserved regions where there is a paucity of hematologists. Hence, the deployment of deep learning for the classification of such cells reduces the workload of hematologists. In this work, a novel hybrid approach using K-mean color quantization segmented-based attention-deep Convolution Neural Network (CNN) with an Extreme Gradient Boosting (XGBoost) algorithm for classifying poikilocytosis has been proposed for detection and classification of abnormal cells.The proposed hybrid model has outperformed the lightweight CNN model and benchmark models on two data sets: one publicly accessible Chula-PIC-Lab data set and one privately collected dataset. On the Chula-PIC-Lab and CCHRC datasets, the proposed model obtains 95.38%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$95.38\%$$\end{document} and 93.43%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$93.43\%$$\end{document} of F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_1$$\end{document}-score on segmentation, 98.44%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.44\%$$\end{document} and 98.24%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.24\%$$\end{document} of accuracy on classification; 98.55%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.55\%$$\end{document} and 98.28%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.28\%$$\end{document}of F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_1$$\end{document}-score on poikilocytosis classification respectively.
引用
收藏
页码:523 / 539
页数:16
相关论文
共 89 条
[1]  
Agrawal T(2021)FocusCovid: automated COVID-19 detection using deep learning with chest x-ray images Evol Syst 14 319-341
[2]  
Choudhary P(2023)Evolving fuzzy neural classifier that integrates uncertainty from human-expert feedback Evol Syst 162 263-271
[3]  
Campos Souza PV(2018)A decision support system for type 1 diabetes mellitus diagnostics based on dual channel analysis of red blood cell membrane fluidity Comput Methods Programs Biomed 11 963-24
[4]  
Lughofer E(2022)Efficient detection and partitioning of overlapped red blood cells using image processing approach Innov Syst Softw Eng 1 1-949
[5]  
Cordelli E(2023)HPKNN: hyper-parameter optimized KNN classifier for classification of poikilocytosis Int J Imaging Syst Technol 12 156-90
[6]  
Maulucci G(2019)Fast color quantization by k-means clustering combined with image sampling Symmetry 43 941-161
[7]  
De Spirito M(2022)Multi-class classification of Alzheimer’s disease through distinct neuroimaging computational approaches using florbetapir pet scans Evol Syst 12 14122-180
[8]  
Rizzi A(2022)Automatic classification of red blood cell morphology based on quantitative phase imaging Int J Optics 60 84-653
[9]  
Pitocco D(2021)The image classification method with CNN-XGBoost model based on adaptive particle swarm optimization Information 49 155-452
[10]  
Soda P(2010)Mri brain lesion image detection based on color-converted k-means clustering segmentation Measurement 11 165-34226