Blowing-up solutions of multi-order fractional differential equations with the periodic boundary condition

被引:0
作者
Qun Dai
Changjia Wang
Ruimei Gao
Zhe Li
机构
[1] Changchun University of Science and Technology,College of Science
来源
Advances in Difference Equations | / 2017卷
关键词
fractional differential equations; periodic boundary problem; multi-order Mittag-Leffler functions; blowing-up solutions; 34A08; 34B15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we analyze the boundary value problem of a class of multi-order fractional differential equations involving the standard Caputo fractional derivative with the general periodic boundary conditions: {L(D)u(t)=f(t,u(t)),t∈[0,T],T>0,u(0)=u(T)>0,u′(0)=u′(T)>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} L(D)u(t) = f(t,u(t)),\quad t\in[0,T], T>0, \\ u(0) = u(T)>0,\qquad u'(0)=u'(T)>0, \end{cases} $$\end{document} where L(D)=∑i=0naiDSi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L(D)=\sum^{n}_{i=0}a_{i}D^{S_{i}}$\end{document}, 1≤S0<⋯<Sn−1<Sn<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\leq S_{0}<\cdots<S_{n-1}<S_{n}<2$\end{document}, ai∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{i}\in\mathbb{R}$\end{document}, an≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{n}\neq0$\end{document}, and f:[0,T]×R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f:[0,T]\times\mathbb{R}\rightarrow\mathbb{R}$\end{document} is a continuous operation. We get the Green’s function in terms of the Laplace transform. We obtain the existence and uniqueness of solution for the class of multi-order fractional differential equations. We investigate the blowing-up solutions to the special case f(t,u(t))=|u(t)|p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(t,u(t))=|u(t)|^{p}$\end{document}, ai≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{i}\geq0$\end{document}, and give an upper bound on the blow-up time Tmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{max}}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Anti-periodic fractional boundary value problems for nonlinear differential equations of fractional order
    Wang X.
    Guo X.
    Tang G.
    [J]. Journal of Applied Mathematics and Computing, 2013, 41 (1-2) : 367 - 375
  • [22] Asymptotically periodic solutions of fractional differential equations
    Cuevas, Claudio
    Henriquez, Hernan R.
    Soto, Herme
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 236 : 524 - 545
  • [23] Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations
    Wang, JinRong
    Feckan, Michal
    Zhou, Yong
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (02) : 246 - 256
  • [24] Existence and uniqueness of solutions of differential equations of fractional order with integral boundary conditions
    Nanware, J. A.
    Dhaigude, D. B.
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2014, 7 (04): : 246 - 254
  • [25] Fractional-order differential equations with anti-periodic boundary conditions: a survey
    Ravi P Agarwal
    Bashir Ahmad
    Ahmed Alsaedi
    [J]. Boundary Value Problems, 2017
  • [26] EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO A COUPLED SYSTEM OF NONLINEAR FRACTIONAL ORDER DIFFERENTIAL EQUATIONS WITH ANTI PERIODIC BOUNDARY CONDITIONS
    Shah, Kamal
    Khan, Rahmat Ali
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2015, 7 (02): : 245 - 262
  • [27] Fractional-order differential equations with anti-periodic boundary conditions: a survey
    Agarwal, Ravi P.
    Ahmad, Bashir
    Alsaedi, Ahmed
    [J]. BOUNDARY VALUE PROBLEMS, 2017,
  • [28] Existence of solutions for fractional differential equations of order q ∈ (2,3] with anti-periodic boundary conditions
    Ahmad B.
    [J]. Journal of Applied Mathematics and Computing, 2010, 34 (1-2) : 385 - 391
  • [29] A class of differential equations of fractional order with multi-point boundary conditions
    Ahmad, Bashir
    Nieto, Juan J.
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2014, 21 (03) : 243 - 248
  • [30] Trivariate Mittag-Leffler functions used to solve multi-order systems of fractional differential equations
    Ahmadova, Arzu
    Huseynov, Ismail T.
    Fernandez, Arran
    Mahmudov, Nazim, I
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 97