Blowing-up solutions of multi-order fractional differential equations with the periodic boundary condition

被引:0
|
作者
Qun Dai
Changjia Wang
Ruimei Gao
Zhe Li
机构
[1] Changchun University of Science and Technology,College of Science
来源
Advances in Difference Equations | / 2017卷
关键词
fractional differential equations; periodic boundary problem; multi-order Mittag-Leffler functions; blowing-up solutions; 34A08; 34B15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we analyze the boundary value problem of a class of multi-order fractional differential equations involving the standard Caputo fractional derivative with the general periodic boundary conditions: {L(D)u(t)=f(t,u(t)),t∈[0,T],T>0,u(0)=u(T)>0,u′(0)=u′(T)>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} L(D)u(t) = f(t,u(t)),\quad t\in[0,T], T>0, \\ u(0) = u(T)>0,\qquad u'(0)=u'(T)>0, \end{cases} $$\end{document} where L(D)=∑i=0naiDSi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L(D)=\sum^{n}_{i=0}a_{i}D^{S_{i}}$\end{document}, 1≤S0<⋯<Sn−1<Sn<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\leq S_{0}<\cdots<S_{n-1}<S_{n}<2$\end{document}, ai∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{i}\in\mathbb{R}$\end{document}, an≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{n}\neq0$\end{document}, and f:[0,T]×R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f:[0,T]\times\mathbb{R}\rightarrow\mathbb{R}$\end{document} is a continuous operation. We get the Green’s function in terms of the Laplace transform. We obtain the existence and uniqueness of solution for the class of multi-order fractional differential equations. We investigate the blowing-up solutions to the special case f(t,u(t))=|u(t)|p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(t,u(t))=|u(t)|^{p}$\end{document}, ai≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{i}\geq0$\end{document}, and give an upper bound on the blow-up time Tmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{max}}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Blowing-up solutions of multi-order fractional differential equations with the periodic boundary condition
    Dai, Qun
    Wang, Changjia
    Gao, Ruimei
    Li, Zhe
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [2] Nonlinear multi-order fractional differential equations with periodic/anti-periodic boundary conditions
    Choudhary, Sangita
    Daftardar-Gejji, Varsha
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (02) : 333 - 347
  • [3] Nonlinear multi-order fractional differential equations with periodic/anti-periodic boundary conditions
    Sangita Choudhary
    Varsha Daftardar-Gejji
    Fractional Calculus and Applied Analysis, 2014, 17 : 333 - 347
  • [4] BLOWING-UP SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH SHIFTS: A SURVEY
    Kirane, Mokhtar
    Alsaedi, Ahmed
    Ahmad, Bashir
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (06): : 1537 - 1556
  • [5] Existence and uniqueness of symmetric solutions for fractional differential equations with multi-order fractional integral conditions
    Aphithana, Aphirak
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    BOUNDARY VALUE PROBLEMS, 2015,
  • [6] Existence and uniqueness of symmetric solutions for fractional differential equations with multi-order fractional integral conditions
    Aphirak Aphithana
    Sotiris K Ntouyas
    Jessada Tariboon
    Boundary Value Problems, 2015
  • [7] SPECTRAL COLLOCATION METHOD FOR MULTI-ORDER FRACTIONAL DIFFERENTIAL EQUATIONS
    Ghoreishi, F.
    Mokhtary, P.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2014, 11 (05)
  • [8] A numerical scheme for the solution of multi-order fractional differential equations
    Momani, Shaher
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (01) : 761 - 770
  • [9] Conditions for the Absence of Blowing Up Solutions to Fractional Differential Equations
    Paulo M. de Carvalho-Neto
    Renato Fehlberg Júnior
    Acta Applicandae Mathematicae, 2018, 154 : 15 - 29
  • [10] Conditions for the Absence of Blowing Up Solutions to Fractional Differential Equations
    de Carvalho-Neto, Paulo M.
    Fehlberg Junior, Renato
    ACTA APPLICANDAE MATHEMATICAE, 2018, 154 (01) : 15 - 29