On topological degree for pseudomonotone operators in fractional Orlicz-Sobolev spaces: study of positive solutions of non-local elliptic problems

被引:0
作者
H. El-Houari
H. Sabiki
H. Moussa
机构
[1] Faculté des Sciences et Techniques Béni Mellal,Laboratoire de recherche “Mathématiques Appliquées et Calcul Scientifique”
[2] Université Sultan Moulay Slimane: Ecole Nationale de Commerce et de Gestion,MAROC Laboratoire de recherche “Mathématiques Appliquées et Calcul Scientifique”
来源
Advances in Operator Theory | 2024年 / 9卷
关键词
Fractional Orlicz–Sobolev spaces; Topological Degree; Pseudomonotone operators; Non-local elliptic equation.; 35J60; 35J20; 46E35; 58E30;
D O I
暂无
中图分类号
学科分类号
摘要
In this research, we analyze the existence of infinite sequences of ordered solutions for a class of non-local elliptic problem with Dirichlet boundary condition. The primary techniques employed consist of topological degree theory for mappings of type S+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_+$$\end{document} and minimization arguments in a fractional Orlicz–Sobolev space. Our main results generalize some recent findings in the literature to non-smooth cases.
引用
收藏
相关论文
共 54 条
  • [1] Abada ESMA(2021)Topological degree method for fractional Laplacian system Bull. Math. Anal. Appl. 13 10-19
  • [2] Lakhal HAKIM(2019)On a nonlocal fractional p (.,.)-Laplacian problem with competing nonlinearities Complex Anal. Oper. Theory 13 1377-1399
  • [3] Maouni MESSAOUD(2021)Neumann and Robin type boundary conditions in fractional Orlicz–Sobolev spaces ESAIM Control Optim. Calc. Var. 27 S15-695
  • [4] Ali KB(2020)Basic results of fractional Orlicz–Sobolev space and applications to non-local problems Topol. Methods Nonlinear Anal. 55 681-1044
  • [5] Hsini M(2020)On a class of nonvariational problems in fractional Orlicz–Sobolev spaces Nonlinear Anal. 190 1021-39
  • [6] Kefi K(2023)Variational eigenvalues of the fractional g-Laplacian Complex Var. Elliptic Equ. 68 1-1164
  • [7] Chung NT(2019)Fractional order Orlicz–Sobolev Spaces J. Funct. Anal. 223 1131-458
  • [8] Bahrouni S(2022)Interior and up to the boundary regularity for the fractional g-Laplacian: the convex case Nonlinear Anal. 9 439-968
  • [9] Salort AM(1983)Fixed point theory and nonlinear problems Bull. Am. Math. Soc. 9 130-30
  • [10] Bahrouni S(2023)Multiplicity of solutions for nonlocal parametric elliptic systems in fractional Orlicz–Sobolev spaces J. Elliptic Parabol. Equ. 16 951-130