Euler-type Diagrams and the Quantification of the Predicate

被引:0
作者
Jens Lemanski
机构
[1] Universitätsstr. 33,Institut für Philosophie
[2] FernUniversität in Hagen,undefined
来源
Journal of Philosophical Logic | 2020年 / 49卷
关键词
Logic diagrams; Euler diagrams; Extended syllogistics; Quantification of the predicate;
D O I
暂无
中图分类号
学科分类号
摘要
Logicians have often suggested that the use of Euler-type diagrams has influenced the idea of the quantification of the predicate. This is mainly due to the fact that Euler-type diagrams display more information than is required in traditional syllogistics. The paper supports this argument and extends it by a further step: Euler-type diagrams not only illustrate the quantification of the predicate, but also solve problems of traditional proof theory, which prevented an overall quantification of the predicate. Thus, Euler-type diagrams can be called the natural basis of syllogistic reasoning and can even go beyond. In the paper, these arguments are presented in connection with the book Nucleus Logicae Weisaniae by Johann Christian Lange from 1712.
引用
收藏
页码:401 / 416
页数:15
相关论文
共 46 条
[21]   A Simple Approach for Boundary Improvement of Euler Diagrams [J].
Simonetto, Paolo ;
Archambault, Daniel ;
Scheidegger, Carlos .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2016, 22 (01) :678-687
[22]   SPEULER: Semantics-preserving Euler Diagrams [J].
Kehlbeck, Rebecca ;
Goertler, Jochen ;
Wang, Yunhai ;
Deussen, Oliver .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (01) :433-442
[23]   Kant’s Crucial Contribution to Euler Diagrams [J].
Jens Lemanski .
Journal for General Philosophy of Science, 2024, 55 :59-78
[24]   Using Euler Diagrams in Traditional Library Environments [J].
Thievre, Jerome ;
Viaud, Marie-Luce ;
Verroust-Blondet, Anne .
ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2005, 134 :189-202
[25]   Spherule Diagrams: A Matrix-based Set Visualization Compared with Euler diagrams [J].
Sathiyanarayanan, Mithileysh ;
Pirozzi, Donato .
2015 INTERNATIONAL CONFERENCE ON GREEN COMPUTING AND INTERNET OF THINGS (ICGCIOT), 2015, :1543-1548
[26]   EulerMerge: Simplifying Euler Diagrams Through Set Merges [J].
Yan, Xinyuan ;
Rodgers, Peter ;
Rottmann, Peter ;
Archambault, Daniel ;
Haunert, Jan-Henrik ;
Wang, Bei .
DIAGRAMMATIC REPRESENTATION AND INFERENCE, DIAGRAMS 2024, 2024, 14981 :190-206
[27]   Wellformedness Properties in Euler Diagrams: Which Should Be Used? [J].
Rodgers, Peter ;
Zhang, Leishi ;
Purchase, Helen .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012, 18 (07) :1089-1100
[28]   On the drawability of 3D Venn and Euler diagrams [J].
Flower, Jean ;
Stapleton, Gem ;
Rodgers, Peter .
JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2014, 25 (03) :186-209
[29]   Euler diagrams drawn with ellipses area-proportionally (Edeap) [J].
Wybrow, Michael ;
Rodgers, Peter ;
Dib, Fadi K. .
BMC BIOINFORMATICS, 2021, 22 (01)
[30]   Small multiples Euler-time diagrams for software engineering [J].
Sathiyanarayanan M. ;
Alsaffar M. .
Innovations in Systems and Software Engineering, 2017, 13 (4) :299-307