Faster first-order primal-dual methods for linear programming using restarts and sharpness

被引:0
|
作者
David Applegate
Oliver Hinder
Haihao Lu
Miles Lubin
机构
[1] Google Research,
[2] University of Pittsburgh,undefined
[3] University of Chicago Booth School of Business,undefined
来源
Mathematical Programming | 2023年 / 201卷
关键词
90C05 (linear programming); 90C47 (minimax problems);
D O I
暂无
中图分类号
学科分类号
摘要
First-order primal-dual methods are appealing for their low memory overhead, fast iterations, and effective parallelization. However, they are often slow at finding high accuracy solutions, which creates a barrier to their use in traditional linear programming (LP) applications. This paper exploits the sharpness of primal-dual formulations of LP instances to achieve linear convergence using restarts in a general setting that applies to alternating direction method of multipliers (ADMM), primal-dual hybrid gradient method (PDHG) and extragradient method (EGM). In the special case of PDHG, without restarts we show an iteration count lower bound of Ω(κ2log(1/ϵ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\kappa ^2 \log (1/\epsilon ))$$\end{document}, while with restarts we show an iteration count upper bound of O(κlog(1/ϵ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\kappa \log (1/\epsilon ))$$\end{document}, where κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} is a condition number and ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} is the desired accuracy. Moreover, the upper bound is optimal for a wide class of primal-dual methods, and applies to the strictly more general class of sharp primal-dual problems. We develop an adaptive restart scheme and verify that restarts significantly improve the ability of PDHG, EGM, and ADMM to find high accuracy solutions to LP problems.
引用
收藏
页码:133 / 184
页数:51
相关论文
共 50 条
  • [21] A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging
    Antonin Chambolle
    Thomas Pock
    Journal of Mathematical Imaging and Vision, 2011, 40 : 120 - 145
  • [22] An Implementable First-Order Primal-Dual Algorithm for Structured Convex Optimization
    Ma, Feng
    Ni, Mingfang
    Zhu, Lei
    Yu, Zhanke
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [23] A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging
    Chambolle, Antonin
    Pock, Thomas
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2011, 40 (01) : 120 - 145
  • [24] An improved first-order primal-dual algorithm with a new correction step
    Xingju Cai
    Deren Han
    Lingling Xu
    Journal of Global Optimization, 2013, 57 : 1419 - 1428
  • [25] An improved first-order primal-dual algorithm with a new correction step
    Cai, Xingju
    Han, Deren
    Xu, Lingling
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 57 (04) : 1419 - 1428
  • [26] APPROXIMATE FIRST-ORDER PRIMAL-DUAL ALGORITHMS FOR SADDLE POINT PROBLEMS
    Jiang, Fan
    Cai, Xingju
    Wu, Zhongming
    Han, Deren
    MATHEMATICS OF COMPUTATION, 2021, 90 (329) : 1227 - 1262
  • [27] A primal-dual finite element method for first-order transport problems
    Wang, Chunmei
    Wang, Junping
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 417
  • [28] Primal-dual enumeration for multiparametric linear programming
    Jones, Colin N.
    Maciejowski, Jan M.
    MATHEMATICAL SOFTWARE-ICMS 2006, PROCEEDINGS, 2006, 4151 : 248 - 259
  • [29] A MUTUAL PRIMAL-DUAL LINEAR PROGRAMMING ALGORITHM
    HARRIS, MY
    NAVAL RESEARCH LOGISTICS QUARTERLY, 1970, 17 (02): : 199 - &
  • [30] OPTIMAL TRANSPORT USING HELMHOLTZ-HODGE DECOMPOSITION AND FIRST-ORDER PRIMAL-DUAL ALGORITHMS
    Henry, Morgane
    Maitre, Emmanuel
    Perrier, Valerie
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4748 - 4752