Faster first-order primal-dual methods for linear programming using restarts and sharpness

被引:0
作者
David Applegate
Oliver Hinder
Haihao Lu
Miles Lubin
机构
[1] Google Research,
[2] University of Pittsburgh,undefined
[3] University of Chicago Booth School of Business,undefined
来源
Mathematical Programming | 2023年 / 201卷
关键词
90C05 (linear programming); 90C47 (minimax problems);
D O I
暂无
中图分类号
学科分类号
摘要
First-order primal-dual methods are appealing for their low memory overhead, fast iterations, and effective parallelization. However, they are often slow at finding high accuracy solutions, which creates a barrier to their use in traditional linear programming (LP) applications. This paper exploits the sharpness of primal-dual formulations of LP instances to achieve linear convergence using restarts in a general setting that applies to alternating direction method of multipliers (ADMM), primal-dual hybrid gradient method (PDHG) and extragradient method (EGM). In the special case of PDHG, without restarts we show an iteration count lower bound of Ω(κ2log(1/ϵ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\kappa ^2 \log (1/\epsilon ))$$\end{document}, while with restarts we show an iteration count upper bound of O(κlog(1/ϵ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\kappa \log (1/\epsilon ))$$\end{document}, where κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} is a condition number and ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} is the desired accuracy. Moreover, the upper bound is optimal for a wide class of primal-dual methods, and applies to the strictly more general class of sharp primal-dual problems. We develop an adaptive restart scheme and verify that restarts significantly improve the ability of PDHG, EGM, and ADMM to find high accuracy solutions to LP problems.
引用
收藏
页码:133 / 184
页数:51
相关论文
共 94 条
  • [1] Anderson RI(2000)Hotel industry efficiency: an advanced linear programming examination Am. Bus. Rev. 18 40-461
  • [2] Fok R(1973)Time bounds for selection J. Comput. Syst. Sci. 7 448-103
  • [3] Scott J(1956)Production scheduling by the transportation method of linear programming Oper. Res. 4 100-122
  • [4] Blum M(2011)Distributed optimization and statistical learning via the alternating direction method of multipliers Found. Trends® Mach. Learn. 3 1-1359
  • [5] Floyd RW(1993)Weak sharp minima in mathematical programming SIAM J. Control Optim. 31 1340-194
  • [6] Pratt V(1995)A Gauss-Newton method for convex composite optimization Math. Program. 71 179-145
  • [7] Rivest RL(2011)A first-order primal-dual algorithm for convex problems with applications to imaging J. Math. Imaging Vis. 40 120-287
  • [8] Tarjan RE(2016)On the ergodic convergence rates of a first-order primal-dual algorithm Math. Program. 159 253-69
  • [9] Bowman EH(1954)The stepping stone method of explaining linear programming calculations in transportation problems Manag. Sci. 1 49-982
  • [10] Boyd S(2018)Subgradient methods for sharp weakly convex functions J. Optim. Theory Appl. 179 962-439