Intersection numbers from higher-order partial differential equations

被引:0
|
作者
Vsevolod Chestnov
Hjalte Frellesvig
Federico Gasparotto
Manoj K. Mandal
Pierpaolo Mastrolia
机构
[1] Università degli Studi di Padova,Dipartimento di Fisica e Astronomia
[2] INFN,Niels Bohr International Academy
[3] Sezione di Padova,PRISMA Cluster of Excellence, Institut für Physik
[4] University of Copenhagen,undefined
[5] Johannes Gutenberg-Universität Mainz,undefined
来源
Journal of High Energy Physics | / 2023卷
关键词
Differential and Algebraic Geometry; Scattering Amplitudes;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a new method for the evaluation of intersection numbers for twisted meromorphic n-forms, through Stokes’ theorem in n dimensions. It is based on the solution of an n-th order partial differential equation and on the evaluation of multivariate residues. We also present an algebraic expression for the contribution from each multivariate residue. We illustrate our approach with a number of simple examples from mathematics and physics.
引用
收藏
相关论文
共 50 条
  • [1] Intersection numbers from higher-order partial differential equations
    Chestnov, Vsevolod
    Frellesvig, Hjalte
    Gasparotto, Federico
    Mandal, Manoj K.
    Mastrolia, Pierpaolo
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (06)
  • [2] The Dirichlet problem for higher-order partial differential equations
    K. B. Sabitov
    Mathematical Notes, 2015, 97 : 255 - 267
  • [3] The Dirichlet problem for higher-order partial differential equations
    Sabitov, K. B.
    MATHEMATICAL NOTES, 2015, 97 (1-2) : 255 - 267
  • [4] ON HIGHER-ORDER HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS
    PACHPATTE, BG
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1990, 21 (10): : 897 - 904
  • [5] Higher-order stochastic partial differential equations with branching noises
    Lijun Bo
    Yongjin Wang
    Liqing Yan
    Frontiers of Mathematics in China, 2008, 3 : 15 - 35
  • [6] ON A CLASS OF MIXED PARTIAL-DIFFERENTIAL EQUATIONS OF HIGHER-ORDER
    GU, CH
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1982, 3 (04): : 503 - 514
  • [7] Oscillation of higher-order neutral partial functional differential equations
    Li, WN
    Debnath, L
    APPLIED MATHEMATICS LETTERS, 2003, 16 (04) : 525 - 530
  • [8] Higher-order stochastic partial differential equations with branching noises
    Bo, Lijun
    Wang, Yongjin
    Yan, Liqing
    FRONTIERS OF MATHEMATICS IN CHINA, 2008, 3 (01) : 15 - 35
  • [9] Differential Equations Associated with Higher-order Frobenius–Euler Numbers Revisited
    Taekyun Kim
    Dae San Kim
    Lee-Chae Jang
    Hyuck In Kwon
    Differential Equations and Dynamical Systems, 2021, 29 : 353 - 362
  • [10] Oscillation of certain higher-order neutral partial functional differential equations
    Li, Wei Nian
    Sheng, Weihong
    SPRINGERPLUS, 2016, 5