LlogL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\log L$$\end{document} Type Estimates for Commutators of Fractional Integral Operators on the p-Adic Vector Space

被引:0
作者
YunPeng Chang [1 ]
LiangJuan Yu [1 ]
LinQi Sun [1 ]
HuangZhi Xia [1 ]
机构
[1] Mudanjiang Normal University,Department of Mathematics
关键词
Fractional integral operators; Commutator; Sharp function; space; -Adic vector space; 42B35; 11E95; 26A33; 26D10;
D O I
10.1007/s11785-024-01514-4
中图分类号
学科分类号
摘要
In this paper, the main aim is to prove the weak type LlogL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L \log L$$\end{document} estimates for commutators of fractional integral operators and the higher order in the context of the p-adic version of Lebesgue spaces, where the symbols of the commutators belong to the p-adic version of BMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {BMO}}$$\end{document} space. In addition, we also establish the estimates of the sharp function on the p-adic vector space.
引用
收藏
相关论文
共 50 条
[1]  
Albeverio S(2006)Harmonic analysis in the J. Fourier Anal. Appl. 12 393-425
[2]  
Khrennikov AY(2010)-adic Lizorkin spaces: fractional operators, pseudo-differential equations, Appl. Comput. Harmon. Anal. 28 1-23
[3]  
Shelkovich VM(2023)-adic wavelets, Tauberian theorems J. Pseudo-Differ. Oper. Appl. 14 24-393
[4]  
Khrennikov AY(2009)Non-Haar J. Fourier Anal. Appl. 15 366-2685
[5]  
Shelkovich VM(2021)-adic wavelets and their application to pseudo-differential operators and equations Alex. Eng. J. 60 2677-4525
[6]  
Torresblanca-Badillo A(2021)Some further classes of pseudo-differential operators in the AIMS Math. 6 4507-6123
[7]  
Albarracín-Mantilla AA(2021)-adic context and their applications Symmetry 13 1254-25
[8]  
Shelkovich V(2020)-Adic Haar multiresolution analysis and pseudo-differential operators AIMS Math. 5 6108-703
[9]  
Skopina M(2020)A unifying computational framework for novel estimates involving discrete fractional calculus approaches J. Funct. Spaces 2020 1-944
[10]  
Rashid S(1990)New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators Invent. Math. 101 697-17