Differentiability of Lyapunov Exponents

被引:0
作者
Thiago F. Ferraiol
Luiz A. B. San Martin
机构
[1] Imecc - Unicamp,Departamento de Matemática
来源
Journal of Dynamical and Control Systems | 2020年 / 26卷
关键词
Semi-simple Lie groups; Lyapunov exponents; Multiplicative ergodic theorem; Flag manifolds; Differentiability; 37H15; 22E46; 37B55;
D O I
暂无
中图分类号
学科分类号
摘要
We prove differentiability of certain linear combinations of the Lyapunov spectra of a flow on a principal bundle of a semi-simple Lie group. The specific linear combinations that yield differentiability are determined by the finest Morse decomposition on the flag bundles. Differentiability is taken with respect to a differentiable structure on the gauge group, which is a Banach-Lie group.
引用
收藏
页码:289 / 310
页数:21
相关论文
共 22 条
[1]  
Alves LA(2013)Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups Discrete Contin Dynam Systems A 33 1247-73
[2]  
San Martin LAB(2007)Chain transitive sets for flows on flag bundles Forum Math 19 19-60
[3]  
Braga Barros CJ(1995)Maximality of compression semigroups Semigroup Forum 50 205-22
[4]  
San Martin LAB(2007)Chain recurrence of flows and semiflows on fiber bundles Discrete Contin Dynam Systems A 17 113-39
[5]  
Hilgert J(2009)Conley indexes and stable sets for flows on flag bundles Dyn Syst 24 249-76
[6]  
Neeb K-H(1979)Analycity properties of the characteristic exponents of random matrix products Adv Math 32 68-80
[7]  
Patrão M(1993)Invariant control sets on flag manifolds Math Control Signal Syst 6 41-61
[8]  
San Martin LAB(1995)On global controllability of discrete-time control systems Math Control Signals Syst 8 279-97
[9]  
Patrão M(1995)Semigroup actions on homogeneous spaces Semigroups Forum 50 59-88
[10]  
San Martin LAB(2001)Maximal semigroups in semi-simple Lie groups Trans Amer Math Soc 353 5165-84