Sparse Non-negative Stencils for Anisotropic Diffusion

被引:0
|
作者
Jérôme Fehrenbach
Jean-Marie Mirebeau
机构
[1] Université Paul Sabatier,Institut de Mathématiques de Toulouse
[2] University Paris Dauphine,CNRS, Laboratory CEREMADE, UMR 7534
关键词
Anisotropic diffusion; Non-negative numerical scheme; Lattice basis reduction;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a new discretization scheme for Anisotropic Diffusion, AD-LBR, on two and three dimensional Cartesian grids. The main features of this scheme is that it is non-negative and has sparse stencils, of cardinality bounded by 6 in 2D, by 12 in 3D, despite allowing diffusion tensors of arbitrary anisotropy. The radius of these stencils is not a-priori bounded however, and can be quite large for pronounced anisotropies. Our scheme also has good spectral properties, which permits larger time steps and avoids e.g. chessboard artifacts.
引用
收藏
页码:123 / 147
页数:24
相关论文
共 50 条
  • [11] On the uniqueness of non-negative sparse & redundant representations
    Bruckstein, Alfred M.
    Elad, Michael
    Zibulevsky, Michael
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 5145 - 5148
  • [12] Heterogeneous Convolutive Non-Negative Sparse Coding
    Wang, Dong
    Tejedor, Javier
    13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3, 2012, : 2147 - 2150
  • [13] Probabilistic Sparse Non-negative Matrix Factorization
    Hinrich, Jesper Love
    Morup, Morten
    LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2018), 2018, 10891 : 488 - 498
  • [14] Sparse and Non-Negative BSS for Noisy Data
    Rapin, Jeremy
    Bobin, Jerome
    Larue, Anthony
    Starck, Jean-Luc
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (22) : 5620 - 5632
  • [15] A Novel Approach to Extracting Non-Negative Latent Factors From Non-Negative Big Sparse Matrices
    Luo, Xin
    Zhou, Mengchu
    Shang, Mingsheng
    Li, Shuai
    Xia, Yunni
    IEEE ACCESS, 2016, 4 : 2649 - 2655
  • [16] Sparse Non-Negative Matrix Factorization for Mesh Segmentation
    McGraw, Tim
    Kang, Jisun
    Herring, Donald
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2016, 16 (01)
  • [17] Perfect Recovery Conditions for Non-negative Sparse Modeling
    Itoh, Yuki
    Duarte, Marco F.
    Parente, Mario
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (01) : 69 - 80
  • [18] Non-negative Sparse Semantic Coding for Text Categorization
    Zheng, Wenbin
    Qian, Yuntao
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 409 - 412
  • [19] Non-negative Local Sparse Coding for Subspace Clustering
    Hosseini, Babak
    Hammer, Barbara
    ADVANCES IN INTELLIGENT DATA ANALYSIS XVII, IDA 2018, 2018, 11191 : 137 - 150
  • [20] Non-negative Kernel Sparse Model for Image Retrieval
    Zhang, Yungang
    Bai, Lei
    Peng, Bo
    ADVANCED MULTIMEDIA AND UBIQUITOUS ENGINEERING: FUTURETECH & MUE, 2016, 393 : 373 - 379