Sparse Non-negative Stencils for Anisotropic Diffusion

被引:0
|
作者
Jérôme Fehrenbach
Jean-Marie Mirebeau
机构
[1] Université Paul Sabatier,Institut de Mathématiques de Toulouse
[2] University Paris Dauphine,CNRS, Laboratory CEREMADE, UMR 7534
关键词
Anisotropic diffusion; Non-negative numerical scheme; Lattice basis reduction;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a new discretization scheme for Anisotropic Diffusion, AD-LBR, on two and three dimensional Cartesian grids. The main features of this scheme is that it is non-negative and has sparse stencils, of cardinality bounded by 6 in 2D, by 12 in 3D, despite allowing diffusion tensors of arbitrary anisotropy. The radius of these stencils is not a-priori bounded however, and can be quite large for pronounced anisotropies. Our scheme also has good spectral properties, which permits larger time steps and avoids e.g. chessboard artifacts.
引用
收藏
页码:123 / 147
页数:24
相关论文
共 50 条
  • [1] Sparse Non-negative Stencils for Anisotropic Diffusion
    Fehrenbach, Jerome
    Mirebeau, Jean-Marie
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2014, 49 (01) : 123 - 147
  • [2] Non-negative sparse coding
    Hoyer, PO
    NEURAL NETWORKS FOR SIGNAL PROCESSING XII, PROCEEDINGS, 2002, : 557 - 565
  • [3] Non-negative sparse modeling of textures
    Peyre, Gabriel
    SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, PROCEEDINGS, 2007, 4485 : 628 - 639
  • [4] Non-negative and sparse spectral clustering
    Lu, Hongtao
    Fu, Zhenyong
    Shu, Xin
    PATTERN RECOGNITION, 2014, 47 (01) : 418 - 426
  • [5] DeepMP for Non-Negative Sparse Decomposition
    Voulgaris, Konstantinos A.
    Davies, Mike E.
    Yaghoobi, Mehrdad
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 2035 - 2039
  • [6] Convolutive Non-Negative Sparse Coding
    Wang, Wenwu
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 3681 - 3684
  • [7] Non-negative Sparse Coding for Motion Extraction
    Guthier, T.
    Willert, V.
    Schnall, A.
    Kreuter, K.
    Eggert, J.
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [8] Multiobjective Sparse Non-Negative Matrix Factorization
    Gong, Maoguo
    Jiang, Xiangming
    Li, Hao
    Tan, Kay Chen
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (08) : 2941 - 2954
  • [9] Enforced Sparse Non-Negative Matrix Factorization
    Gavin, Brendan
    Gadepally, Vijay
    Kepner, Jeremy
    2016 IEEE 30TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2016, : 902 - 911
  • [10] Recovering non-negative and combined sparse representations
    Ramamurthy, Karthikeyan Natesan
    Thiagarajan, Jayaraman J.
    Spanias, Andreas
    DIGITAL SIGNAL PROCESSING, 2014, 26 : 21 - 35