Some results on q-difference equations

被引:0
作者
Junchao Zhang
Gang Wang
Junjie Chen
Rongxiang Zhao
机构
[1] Taiyuan University of Technology,College of Computer Science and Technology
[2] Shandong Transport Vocational College,undefined
[3] Shanxi Taiyuan Tideflow Electronic Technology Co.,undefined
[4] Ltd.,undefined
来源
Advances in Difference Equations | / 2012卷
关键词
uniqueness; -shift; -difference equations; entire functions; zero order; Nevanlinna theory;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the q-difference analogue of the Clunie theorem. We obtain there is no zero-order entire solution of fn(z)+(∇qf(z))n=1 when n≥2; there is no zero-order transcendental entire solution of fn(z)+P(z)(∇qf(z))m=Q(z) when n>m≥0; and the equation fn+P(z)∇qf(z)=h(z) has at most one zero-order transcendental entire solution f if f is not the solution of ∇qf(z)=0, when n≥4.
引用
收藏
相关论文
共 28 条
[1]  
Clunie J(1962)On integral and meromorphic functions J. Lond. Math. Soc 37 17-27
[2]  
Laine I(2007)Clunie theorems for difference and J. Lond. Math. Soc 76 556-566
[3]  
Yang CC(2011)-difference polynomials J. Differ. Equ. Appl 17 387-400
[4]  
Korhonen R(2007)A new Clunie type theorem for difference polynomials Proc. R. Soc. Edinb., Sect. A, Math 137 457-474
[5]  
Barnett D(2004)Nevanlinna theory for the Nagoya Math. J 175 75-102
[6]  
Halburd R-G(2005)-difference operator and meromorphic solutions of q-difference equations Math. Proc. Camb. Philos. Soc 139 139-147
[7]  
Korhonen R-J(2002)Wiman-Valiron method for difference equations Aequ. Math 63 110-135
[8]  
Morgan W(1913)Borel and Julia directions of meromorphic Schröder functions Acta Math 36 297-343
[9]  
Ishizaki K(2002)Meromorphic solutions of generalized Schröder equations Aequ. Math 63 140-151
[10]  
Yanagihara N(2009)Sur les fonctions à un nombre fini des branches définies par les équations différentielles du premier ordre J. Math. Anal. Appl 359 384-393