An optimal boundary control problem for the motion equations of polymer solutions

被引:0
作者
Baranovskiĭ E.S. [1 ]
机构
[1] Voronezh State University of Engineering Technologies, Voronezh
关键词
boundary control; hydrodynamics; non-Newtonian fluid; optimal control; polymer solutions; weak solution;
D O I
10.3103/S105513441403002X
中图分类号
学科分类号
摘要
We study an optimal boundary control problem for stationary equations of a model of the motion of weakly concentrated water solutions of polymers. Sufficient conditions are obtained for the solvability of the problem. Some properties of the set of optimal solutions are established. © 2014 Allerton Press, Inc.
引用
收藏
页码:159 / 168
页数:9
相关论文
共 16 条
  • [1] Adams R.A., Fournier J.-F., Sobolev Spaces, (2003)
  • [2] Amfilokhiev V.B., Voitkunskii Y.I., Mazaeva N.P., Khodorkovskii P.S., Flows of polymer solutions in the presence of convective accelerations, Trudy Leningradskogo Korablestroitel'nogo Instituta, No. 96, (1975)
  • [3] Amfilokhiev V.B., Pavlovskii V.A., Experimental data about laminar-turbulent passage for flows of polymer solutons in pipes, Trudy Leningradskogo Korablestroitelnogo Instituta, No. 104, (1976)
  • [4] Baranovskii E.S., Optimal problems for parabolic-type systems with aspheric sets of admissible controls, Izv. Vyssh. Uchebn. Zaved., Mat. No. 12, (2009)
  • [5] Baranovskii E.S., The study of mathematical models describing the flows of a Voigt fluid with linear dependence of the components of the velocity on two space variables, Vestnik Voronezh. Gos. Univ. Ser. Fiz. Mat. No. 1, (2011)
  • [6] Fursikov A.V., Optimal Control of Distributed Systems. Theory and Applications, (1999)
  • [7] Gol'dshtein R.V., Gorodtsov V.A., Continuum Mechanics. Part. I: Foundations and Classical Models of Fluids, (2000)
  • [8] Kolmogorov A.N., Fomin S.V., Elements of the Theory of Functions and Functional Analysis, (2004)
  • [9] Ladyzhenskaya O.A., On the global unique solvability of some two-dimensional problems for the water solutions of polymers, Zap. Nauch. Sem. POMI, 243, (1997)
  • [10] Lions J.L., Quelques Méthodes De Résolution Des Problemes Aux Limites Non Linéaires, (1969)