Markov control processes with randomized discounted cost

被引:0
作者
Juan González-Hernández
Raquiel R. López-Martínez
J. Rubén Pérez-Hernández
机构
[1] IIMAS-UNAM,Departamento de Probabilidad y Estadística
[2] Facultad de Matemáticas UV,Departamento de Ciencias Básicas
[3] UPIITA-IPN,undefined
来源
Mathematical Methods of Operations Research | 2007年 / 65卷
关键词
Markov decision processes; Discounted cost; Random rate; Dynamic programming; 90C40; 93E20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider Markov Decision Processes with discounted cost and a random rate in Borel spaces. We establish the dynamic programming algorithm in finite and infinity horizon cases. We provide conditions for the existence of measurable selectors. And we show an example of consumption-investment problem.
引用
收藏
页码:27 / 44
页数:17
相关论文
共 42 条
  • [1] Abbad M(2003)Hierarchical algorithms for discounted Markov decision processes Math Methods Oper Res 58 237-245
  • [2] Daoui C(2004)The effects of different inflation risk prepius on interest rate spreads Physica A 333 317-324
  • [3] Berument H(2004)Ruin probabilities with a Markov chain interest model Insur Math Econ 35 513-525
  • [4] Kilinc Z(1994)Markov decision models with weighted discounted criteria Math Oper Res 19 152-168
  • [5] Ozlale U(1995)Constrained Markov decision models with weighted discounted rewards Math Oper Res 20 302-320
  • [6] Cai J(1999)Constrained dynamic programming with two discount factors: applications and an algorithm IEEE Trans Autom Control 42 628-631
  • [7] Dickson D(2004)Modelling the U.S. interest rate in terms of I(d) statistical models Q Rev Econ Finance 44 475-486
  • [8] David CM(2005)Optimal pension funding dynamics over infinite control horizon when stochastic rates of return are stationary Insur Math Econ 36 103-116
  • [9] Feinberg EA(2000)Constrained Markov control processes in Borel spaces: the discounted case Math Meth Oper Res 52 271-285
  • [10] Shwartz A(2003)Analysis for some properties of discrete time Markov decision processes Optimization 52 495-505