Periodic Orbits and Semiclassical Form Factor in Barrier Billiards

被引:0
作者
O. Giraud
机构
[1] Université Paul Sabatier,Laboratoire de Physique théorique, UMR 5152 du CNRS
来源
Communications in Mathematical Physics | 2005年 / 260卷
关键词
Neural Network; Statistical Physic; Complex System; Periodic Orbit; Nonlinear Dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
Using heuristic arguments based on the trace formulas, we analytically calculate the semiclassical two-point correlation form factor for a family of rectangular billiards with a barrier of height irrational with respect to the side of the billiard and located at any rational position p/q from the side. To do this, we first obtain the asymptotic density of lengths for each family of periodic orbits by a Siegel-Veech formula. The result [inline-graphic not available: see fulltext] obtained for these pseudo-integrable, non-Veech billiards is different but not far from the value of 1/2 expected for semi-Poisson statistics and from values of [inline-graphic not available: see fulltext] obtained previously in the case of Veech billiards.
引用
收藏
页码:183 / 201
页数:18
相关论文
共 28 条
  • [11] Bogomolny undefined(2001)undefined Commun. Math. Phys. 222 327-undefined
  • [12] Casati undefined(1999)undefined Phys. Rev. Lett. 83 4729-undefined
  • [13] Eskin undefined(2001)undefined Ergod. Theor. & Dyn. Sys. 21 443-undefined
  • [14] Eskin undefined(2003)undefined Duke Math. J. 118 427-undefined
  • [15] Eskin undefined(2003)undefined Publications IHES 97 61-undefined
  • [16] Giraud undefined(2004)undefined J. Phys. A: Math. Gen. 37 L303-undefined
  • [17] Marklof undefined(2000)undefined Duke Math. J. 103 191-undefined
  • [18] O’Keefe undefined(1990)undefined J. Phys. A: Math. Gen. 23 887-undefined
  • [19] Gutkin undefined(1984)undefined J. Phys. A: Math. Gen. 17 3429-undefined
  • [20] Hannay undefined(1998)undefined Commun. Math. Phys. 199 169-undefined