Oscillation;
nonlinear;
second order elliptic equation;
Riccati techniques;
34C10;
35B05;
35J60;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Some oscillation theorems are given for the nonlinear second order elliptic equation\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
{\sum\limits_{i,j = 1}^N {D_{i} {\left[ {a_{{ij}} {\left( x \right)}\Psi {\left( y \right)}{\left\| {\nabla y} \right\|}^{{p - 2}} D_{j} y} \right]}} } + c{\left( x \right)}f{\left( y \right)} = 0.
$$\end{document} The results are extensions of modified Riccati techniques and include recent results of Usami.
机构:
S China Univ Technol, Dept Automat Control Engn, Guangzhou 510641, Peoples R ChinaS China Univ Technol, Dept Automat Control Engn, Guangzhou 510641, Peoples R China
Liu, ST
Liu, YQ
论文数: 0引用数: 0
h-index: 0
机构:S China Univ Technol, Dept Automat Control Engn, Guangzhou 510641, Peoples R China
机构:
S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
机构:
South China Normal Univ, Sch Math, Guangzhou 510631, Guangdong, Peoples R ChinaSouth China Normal Univ, Sch Math, Guangzhou 510631, Guangdong, Peoples R China
Cui, Shuli
Xu, Zhiting
论文数: 0引用数: 0
h-index: 0
机构:
South China Normal Univ, Sch Math, Guangzhou 510631, Guangdong, Peoples R ChinaSouth China Normal Univ, Sch Math, Guangzhou 510631, Guangdong, Peoples R China