On the picard group and the brauer group of a real algebraic surface

被引:0
作者
V. A. Krasnov
机构
[1] Yaroslavl State University,
来源
Mathematical Notes | 2000年 / 67卷
关键词
real algebraic variety; equivariant étale cohomology; cycle map; Hochschild-Serre spectral sequence; Galois group; Picard group; Brauer group; sheaf of groups;
D O I
暂无
中图分类号
学科分类号
摘要
The map of the Brauer group of a real algebraic surface to the invariant part of the Brauer group of its complexification is studied. In this study, the real cycle map of the Picard group is used.
引用
收藏
页码:168 / 175
页数:7
相关论文
共 5 条
[1]  
Krasnov V. A.(1983)Harnack-Thom inequalities for mappings of real algebraic varieties Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.] 47 268-297
[2]  
Krasnov V. A.(1996)The cohomological Brauer group of a real algebraic variety Izv. Ross. Akad. Nauk Ser. Mat. [Russian Acad. Sci. Izv. Math.] 60 57-88
[3]  
Krasnov V. A.(1996)Equivariant cohomology of a real algebraic surface and its applications Izv. Ross. Akad. Nauk Ser. Mat. [Russian Acad. Sci. Izv. Math.] 60 101-126
[4]  
Rokhlin V. A.(1972)Congruences modulo 16 in Hilbert’s sixteenth problem Funktsional. Anal. i Prilozhen. [Functional Anal. Appl.] 6 71-75
[5]  
Krasnov V. A.(1991)Characteristic classes of vector bundles on a real algebraic variety Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.] 55 716-746