Casimir Operators and Monodromy Representations of Generalised Braid Groups

被引:0
作者
John J. Millson
Valerio Toledano Laredo
机构
[1] Mathematics Department,
[2] University of Maryland,undefined
[3] College Park,undefined
[4] MD 20742-4015,undefined
[5] Institut de Mathematiques de Jussieu Universite Pierre et Marie Curie,undefined
[6] 16 rue Clisson,undefined
[7] F-75013,undefined
[8] Paris,undefined
来源
Transformation Groups | 2005年 / 10卷
关键词
Topological Group; Weyl Group; Weight Space; Simple Polis; Braid Group;
D O I
暂无
中图分类号
学科分类号
摘要
Let g be a complex, simple Lie algebra with Cartan subalgebra h and Weyl group W. We construct a one-parameter family of flat connections ∇κ on h with values in any finite-dimensional g-module V and simple poles on the root hyperplanes. The corresponding monodromyre presentation of the braid group Bg of type g is a deformation of the action of (afinite extension of) W on V. The residues of ∇κ are the Casimirs κα of the subalgebra sslα2 ⊂ g corresponding to the roots of g. The irreducibility of a subspace U ⊂= V under the κα implies that, for generic values of the parameter, the braid group Bg acts irreducibly on U. Answering a question of Knutson and Procesi, we show that these Casimirs act irreducibly on the weight spaces of all simple g-modules if g = sl3 but that this is not the case if g ≇ sl2,sl3. We use this to disprove a conjecture of Kwon and Lusztig stating the irreducibility of quantum Weyl group actions of Artin’s braid group Bn on the zero-weight spaces of all simple Usln-modules for n≥4. Finally, we study their reducibility of the action of the Casimirs on the zero-weight spaces of self-dual g-modules and obtain complete classification results for g = sln and g2.
引用
收藏
页码:217 / 254
页数:37
相关论文
empty
未找到相关数据