PLS Path modelling: computation of latent variables with the estimation mode B

被引:0
作者
Mohamed Hanafi
机构
[1] Unité de Sensometrie et Chimiometrie,ENITIAA
来源
Computational Statistics | 2007年 / 22卷
关键词
Path modelling; Latent variables; Structural modelling; Covariance structure; Monotonically Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
PLS Path modelling has several interesting advantages compared to other existing approaches traditionally used for structural modelling. However, the lack of convergence properties of the existing iterative procedures for the computation of the latent variables, has always been considered as a major drawback. The convergence is stated only in practice. The present paper shows that when the estimation mode B is chosen for all blocks, the iterative procedure for the computation of latent variables proposed by Wold (in Encyclopaedia of statistical sciences, vol 6. Wiley, New York, pp. 581–591, 1985) is monotonically convergent.
引用
收藏
页码:275 / 292
页数:17
相关论文
共 22 条
  • [1] PLS path modelling: computation of latent variables with the estimation mode B
    Hanafi, Mohamed
    COMPUTATIONAL STATISTICS, 2007, 22 (02) : 275 - 292
  • [2] On the relationships among latent variables and residuals in PLS path modeling: The formative-reflective scheme
    Vittadini, Giorgio
    Minotti, Simona C.
    Fattore, Marco
    Lovaglio, Pietro G.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (12) : 5828 - 5846
  • [3] SO-PLS as an exploratory tool for path modelling
    Menichelli, Elena
    Almoy, Trygve
    Tomic, Oliver
    Olsen, Nina Veflen
    Naes, Tormod
    FOOD QUALITY AND PREFERENCE, 2014, 36 : 122 - 134
  • [4] Estimation of a regression function corresponding to latent variables
    Kohler, Michael
    Mueller, Florian
    Walk, Harro
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 162 : 88 - 109
  • [5] Mode choice modelling of work trips using latent variables for a medium-sized city in India
    Shaheem, S.
    Sreelekshmi, S.
    Radhakrishnan, Nisha
    Anjaneyulu, M. V. L. R.
    Mathew, Samson
    TRANSPORTATION PLANNING AND TECHNOLOGY, 2024, 47 (07) : 1068 - 1091
  • [6] Modelling dynamical systems using manifest and latent variables
    Willems, JC
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2000, 53 (4-6) : 227 - 237
  • [7] Computation of marginal likelihoods with data-dependent support for latent variables
    Heaps, Sarah E.
    Boys, Richard J.
    Farrow, Malcolm
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 392 - 401
  • [8] Inclusion of latent variables in Mixed Logit models: Modelling and forecasting
    Yanez, M. F.
    Raveau, S.
    Ortuzar, J. de D.
    TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE, 2010, 44 (09) : 744 - 753
  • [9] Assessing the incorporation of latent variables in the estimation of the value of a statistical life
    Barrientos, Manuel
    Lavin, Felipe Vasquez
    Oliva, Roberto D. Ponce
    RISK ANALYSIS, 2024, 44 (09) : 2107 - 2124
  • [10] Improved Understanding of Industrial Process Relationships Through Conditional Path Modelling With Process PLS
    Offermans, Tim
    Hendriks, Lynn
    van Kollenburg, Geert H.
    Szymanska, Ewa
    Buydens, Lutgarde M. C.
    Jansen, Jeroen J.
    FRONTIERS IN ANALYTICAL SCIENCE, 2021, 1