Wilson Loop Expectations for Non-abelian Finite Gauge Fields Coupled to a Higgs Boson at Low and High Disorder

被引:2
作者
Adhikari, Arka [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
LATTICE; TRANSITION;
D O I
10.1007/s00220-024-04998-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider computations of Wilson loop expectations to leading order at large beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} in the case where a non-abelian finite gauge field interacts with a Higgs boson. By identifying the main order contributions from minimal vortices, we can express the Wilson loop expectations via an explicit Poisson random variable. This paper treats multiple cases of interests, including the Higgs boson at low and high disorder, and finds efficient polymer expansion like computations for each of these regimes.
引用
收藏
页数:79
相关论文
共 21 条
[1]  
Adell JA, 2005, BERNOULLI, V11, P47
[2]   TOPOLOGICAL ANOMALIES IN THE N-DEPENDENCE OF THE N-STATES POTTS LATTICE GAUGE-THEORY [J].
AIZENMAN, M ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1984, 235 (01) :1-18
[3]   GAUGE FIELDS ON A LATTICE .2. GAUGE-INVARIANT ISING-MODEL [J].
BALIAN, R ;
DROUFFE, JM ;
ITZYKSON, C .
PHYSICAL REVIEW D, 1975, 11 (08) :2098-2103
[4]   GAUGE FIELDS ON A LATTICE .1. GENERAL OUTLOOK [J].
BALIAN, R ;
DROUFFE, JM ;
ITZYKSON, C .
PHYSICAL REVIEW D, 1974, 10 (10) :3376-3395
[5]   GAUGE FIELDS ON A LATTICE .3. STRONG-COUPLING EXPANSIONS AND TRANSITION POINTS [J].
BALIAN, R ;
DROUFFE, JM ;
ITZYKSON, C .
PHYSICAL REVIEW D, 1975, 11 (08) :2104-2119
[7]   Wilson Loop Expectations in Lattice Gauge Theories with Finite Gauge Groups [J].
Cao, Sky .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 380 (03) :1439-1505
[8]   Wilson Loops in Ising Lattice Gauge Theory [J].
Chatterjee, Sourav .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 377 (01) :307-340
[9]   Approximating dependent rare events [J].
Chen, Louis H. Y. ;
Roellin, Adrian .
BERNOULLI, 2013, 19 (04) :1243-1267
[10]   MONTE-CARLO STUDY OF ABELIAN LATTICE GAUGE-THEORIES [J].
CREUTZ, M ;
JACOBS, L ;
REBBI, C .
PHYSICAL REVIEW D, 1979, 20 (08) :1915-1922