Two-step wavelet-based estimation for Gaussian mixed fractional processes

被引:0
作者
Patrice Abry
Gustavo Didier
Hui Li
机构
[1] Université de Lyon,Laboratoire de Physique, ENS de Lyon, CNRS
[2] Université Claude Bernard,Mathematics Department
[3] Tulane University,undefined
来源
Statistical Inference for Stochastic Processes | 2019年 / 22卷
关键词
Multivariate stochastic process; Fractional stochastic process; Operator self-similarity; Demixing; Wavelets; Primary: 62M10; 60G18; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
A Gaussian mixed fractional process {Y(t)}t∈R={PX(t)}t∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{Y(t)\}_{t \in {\mathbb {R}}} = \{PX(t)\}_{t \in {\mathbb {R}}}$$\end{document} is a multivariate stochastic process obtained by pre-multiplying a vector of independent, Gaussian fractional process entries X by a nonsingular matrix P. It is interpreted that Y is observable, while X is a hidden process occurring in an (unknown) system of coordinates P. Mixed processes naturally arise as approximations to solutions of physically relevant classes of multivariate fractional stochastic differential equations under aggregation. We propose a semiparametric two-step wavelet-based method for estimating both the demixing matrix P-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{-1}$$\end{document} and the memory parameters of X. The asymptotic normality of the estimator is established both in continuous and discrete time. Monte Carlo experiments show that the estimator is accurate over finite samples, while being very computationally efficient. As an application, we model a bivariate time series of annual tree ring width measurements.
引用
收藏
页码:157 / 185
页数:28
相关论文
共 209 条
[1]  
Abry P(2018)Wavelet eigenvalue regression for J Multivar Anal 168 75-104
[2]  
Didier G(2018)-variate operator fractional Brownian motion Bernoulli 24 895-928
[3]  
Abry P(1998)Wavelet estimation for operator fractional Brownian motion IEEE Trans Inf Theory 44 2-15
[4]  
Didier G(2016)Wavelet analysis of long-range dependent traffic J Time Ser Anal 37 476-512
[5]  
Abry P(2011)Multivariate wavelet Whittle estimation in long-range dependence IEEE Trans Signal Process 59 5152-5168
[6]  
Veitch D(2012)Identification of the multivariate fractional Brownian motion Bull Soc Math Fr Sémin Congr 28 65-87
[7]  
Achard S(2018)Basic properties of the multivariate fractional Brownian motion Stat Sci 33 96-116
[8]  
Gannaz I(2010)How the instability of ranks under long memory affects large-sample inference Int J Mod Phys D 19 1049-1106
[9]  
Amblard P-O(2002)Data mining and machine learning in astronomy IEEE Trans Inf Theory 48 991-999
[10]  
Coeurjolly J-F(2010)Statistical study of the wavelet analysis of fractional Brownian motion Stoch Process Appl 120 2331-2362