Self-similar solutions of the Laplacian growth problem in the half-plane

被引:0
|
作者
D. V. Vasiliev
A. V. Zabrodin
机构
[1] Institute for Theoretical and Experimental Physics,Emanuel Institute of Biochemical Physics
[2] RAS,undefined
来源
关键词
Laplacian growth; integrable system; conformal map; harmonic moment;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate a version of the Laplacian growth problem with zero surface tension in the upper half-plane. Using the method of time-dependent conformal maps, we find families of self-similar exact solutions that are expressible in terms of the hypergeometric function.
引用
收藏
页码:23 / 36
页数:13
相关论文
共 50 条
  • [21] Correct solutions of plane elastic problems for a half-plane
    Vigak, VM
    INTERNATIONAL APPLIED MECHANICS, 2004, 40 (03) : 283 - 289
  • [22] Correct Solutions of Plane Elastic Problems for a Half-Plane
    V. M. Vigak
    International Applied Mechanics, 2004, 40 : 283 - 289
  • [23] On self-similar growth
    Ramkrishna, D
    Schell, J
    JOURNAL OF BIOTECHNOLOGY, 1999, 71 (1-3) : 255 - 258
  • [24] Self-similar singular solutions of a p-Laplacian evolution equation with absorption
    Chen, XF
    Qi, YW
    Wang, MX
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 190 (01) : 1 - 15
  • [25] Mixed problem of plane orthotropic elasticity in a half-plane
    Soldatov, A. P.
    DIFFERENTIAL EQUATIONS, 2016, 52 (06) : 798 - 812
  • [26] Mixed problem of plane orthotropic elasticity in a half-plane
    A. P. Soldatov
    Differential Equations, 2016, 52 : 798 - 812
  • [27] SELF-SIMILAR PROBLEM OF IMPACT LOADING OF AN ELASTIC HALF-SPACE
    BURENIN, AA
    LAPYGIN, VV
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1979, 43 (04): : 771 - 779
  • [28] Self-similar solution for fractional Laplacian in cones
    Bogdan, Krzysztof
    Knosalla, Piotr
    Lezaj, Lukasz
    Pilarczyk, Dominika
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [29] Regularized Laplacian determinants of self-similar fractals
    Joe P. Chen
    Alexander Teplyaev
    Konstantinos Tsougkas
    Letters in Mathematical Physics, 2018, 108 : 1563 - 1579
  • [30] Self-similar and asymptotically self-similar solutions of nonlinear wave equations
    Hartmut Pecher
    Mathematische Annalen, 2000, 316 : 259 - 281