Exact Algorithms for Intervalizing Coloured Graphs

被引:0
作者
Hans L. Bodlaender
Johan M. M. van Rooij
机构
[1] Utrecht University,Department of Information and Computing Sciences
[2] University of Technology Eindhoven,Department of Mathematics and Computer Science
[3] Consultants in Qualitative Methods,undefined
来源
Theory of Computing Systems | 2016年 / 58卷
关键词
Graph algorithms; Exact algorithms; Interval graphs; Subexponential time; Intervalizing coloured graphs; Pathwidth;
D O I
暂无
中图分类号
学科分类号
摘要
In the Intervalizing Coloured Graphs problem, one must decide for a given graph G = (V, E) with a proper vertex colouring of G whether G is the subgraph of a properly coloured interval graph. For the case that the number of colors is fixed, we give an exact algorithm that uses 2O(n/logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{\mathcal {O}(n/\log n)}$\end{document} time. We also give an O∗(2n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}^{\ast }(2^{n})$\end{document} algorithm for the case that the number of colors is not fixed.
引用
收藏
页码:273 / 286
页数:13
相关论文
共 38 条
[1]  
Àlvarex C(2001)The hardness of intervalizing four colored caterpillars Discret. Math. 235 19-27
[2]  
Díaz J(2010)On the proper intervalization of colored caterpillar trees Informatique Théorique et Applications 43 667-686
[3]  
Serna M(1990)Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees J. Algorithm. 11 631-643
[4]  
Àlvarex C(1996)A linear time algorithm for finding tree-decompositions of small treewidth SIAM J. Comput. 25 1305-1317
[5]  
Serna M(1996)On intervalizing k-colored graphs for DNA physical mapping Discret. Appl. Math. 71 55-77
[6]  
Bodlaender HL(2012)A note on exact algorithms for vertex ordering problems on graphs Theory Comput. Syst. 50 420-432
[7]  
Bodlaender HL(2012)On exact algorithms for treewidth ACM Trans. Algoritm. 9 12-402
[8]  
Bodlaender HL(1996)Efficient and constructive algorithms for the pathwidth and treewidth of graphs J. Algorithm. 21 358-302
[9]  
de Fluiter B(2008)The bidimensionality theory and its algorithmic applications Comput. J. 51 292-261
[10]  
Bodlaender HL(1994)On the complexity of DNA physical mapping Adv. Appl. Math. 15 251-472