Cosmological evolution in f(T, B) gravity

被引:0
作者
Andronikos Paliathanasis
Genly Leon
机构
[1] Durban University of Technology,Institute of Systems Science
[2] Universidad Austral de Chile,Instituto de Ciencias Físicas y Matemáticas
[3] Universidad Católica del Norte,Departamento de Matemáticas
来源
The European Physical Journal Plus | / 136卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For the fourth-order teleparallel fT,B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left( T,B\right) $$\end{document} theory of gravity, we investigate the cosmological evolution for the universe in the case of a spatially flat Friedmann–Lemaître–Robertson–Walker background space. We focus on the case for which fT,B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left( T,B\right) $$\end{document} is separable, that is, fT,B,TB=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left( T,B\right) _{,TB}=0$$\end{document} and fT,B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left( T,B\right) $$\end{document} is a nonlinear function on the scalars T and B. For this fourth-order theory, we use a Lagrange multiplier to introduce a scalar field function which attributes the higher-order derivatives. In order to perform the analysis of the dynamics, we use dimensionless variables which allow the Hubble function to change sign. The stationary points of the dynamical system are investigated both in the finite and infinite regimes. The physical properties of the asymptotic solutions and their stability characteristics are discussed.
引用
收藏
相关论文
共 128 条
[1]  
Tsujikawa S(2008)FRW Cosmology in F(R, T) gravity Phys. Rev. D 77 023507-undefined
[2]  
Moffat JW(2013)undefined Galaxies 1 65-undefined
[3]  
Toth VT(2018)undefined JCAP 05 052-undefined
[4]  
Nunes RC(2021)undefined Nucl. Phys. B 966 115377-undefined
[5]  
Odintsov SD(2016)undefined EPJC 77 230-undefined
[6]  
Sáez-Chillón Gómez D(2019)undefined Rev. D 100 083517-undefined
[7]  
Sharov G.S(2021)undefined Phys. Dark Energy 32 100820-undefined
[8]  
Nunes RC(2007)undefined IJGMMP 4 115-undefined
[9]  
Bonilla A(2011)undefined Phys. Rev. D 84 024020-undefined
[10]  
Pan S(2005)undefined Phys. Rev. D 74 086005-undefined