A goal programming approach for multi-objective linear fractional programming problem with LR possibilistic variables

被引:0
作者
Hamiden Abd El- Wahed Khalifa
Pavan Kumar
机构
[1] Cairo University,Department of Operations Research, Faculty of Graduate Studies for Statistical Research
[2] Qassim University,Department of Mathematics, College of Science and Arts
[3] VIT Bhopal University,Division of Mathematics, School of Advanced Science and Languages
来源
International Journal of System Assurance Engineering and Management | 2022年 / 13卷
关键词
Fuzzy number; Fractional programming; Possibilistic variables; Possibility distribution; Goal programming; Optimal solution;
D O I
暂无
中图分类号
学科分类号
摘要
This article presents a fuzzy multi-objective linear fractional programming (FMOLFP) problem. The goal programming (GP) approach is used to solve the proposed problem. The LR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LR$$\end{document} (Left and Right) possibilistic variables are addressed to the suggested the fuzzy multi-objective linear fractional programming (FMOLFP) model to deal the uncertainty of the model parameters. An auxiliary model in which objective function is the distance between the p-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p -$$\end{document} ary α-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha -$$\end{document} optimal value restriction and p-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p -$$\end{document} ary fuzzy objective function is proposed. In the last, one solved example is given to illustrate and to support the validity of the suggested approach.
引用
收藏
页码:2053 / 2061
页数:8
相关论文
共 51 条
[1]  
Abu Arqub O(2015)Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations Neural Comput Appl 28 1591-1610
[2]  
Abu Arqub O(2020)Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions Soft Comput 20 3283-3302
[3]  
Al-Smadi M(2015)Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method Soft Comput 21 7191-7206
[4]  
Abu Arqub O(2016)Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems Soft Comput 13 864-874
[5]  
AL-Smadi M(2019)Goal programming approach to fully fuzzy fractional transportation problem J Taibah Univ Sci 17 141-164
[6]  
Momani S(1970)Decision making in a fuzzy environment Manage Sci 31 240-245
[7]  
Hayat T(1985)Finding certain weakly- efficient vertices in multiple objective linear fractional programming Manage Sci 19 1123-1147
[8]  
Abu Arqub O(2020)Fuzzy numbers and fractional programming in making decisions Int J Inf Technol Decis Mak 9 181-186
[9]  
Al-Smadi M(1962)Programming with linear fractional functional Naval Res Log Quarterly 2 428-449
[10]  
Momani S(1987)Measuring efficiency of decision making units Eur J Oper Res 46 2269-2278