On the structure of positive solutions of a class of fourth order nonlinear differential equations

被引:0
|
作者
Kusano Takaŝi
Tomoyuki Tanigawa
机构
[1] Fukuoka University,Department of Applied Mathematics, Faculty of Science
[2] Joetsu University of Education,Department of Mathematics
来源
Annali di Matematica Pura ed Applicata | 2006年 / 185卷
关键词
Fourth-order nonlinear differential equation; Positive solution; Oscillation;
D O I
暂无
中图分类号
学科分类号
摘要
A detailed analysis is made of the structure of positive solutions of fourth-order differential equations of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaylines{ (p(t)|x^{\prime\prime}|^{\alpha- 1}x^{\prime\prime})^{\prime\prime} + q(t)|x|^{\beta - 1}x = 0,{\rm (A)}} $$\end{document} under the assumption that α, β are positive constants, p(t), q(t) are positive continuous functions on [a,∞), and p(t) satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaylines{ \int_{a}^{\infty}t^{1+({1}/{\alpha})}(p(t))^{-{1}/{\alpha}}\,{\rm d}t<\infty.} $$\end{document}
引用
收藏
页码:521 / 536
页数:15
相关论文
共 50 条