A special version of the collocation method for integral equations of the first kind

被引:0
作者
N. S. Gabbasov
机构
[1] Branch of Kazan State University,
来源
Differential Equations | 2007年 / 43卷
关键词
Approximate Solution; Collocation Method; Linear Algebraic Equation; Special Version; Volterra Integral Equation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1271 / 1276
页数:5
相关论文
共 50 条
  • [41] Numerical solution of nonlinear third-kind Volterra integral equations using an iterative collocation method
    Kherchouche, Khedidja
    Bellour, Azzeddine
    Lima, Pedro
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (11) : 2063 - 2076
  • [42] Hybrid collocation method for some classes of second-kind nonlinear weakly singular integral equations
    Darani, Narges Mahmoodi
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2023, 11 (01): : 183 - 196
  • [43] On the stability of piecewise polynomial collocation methods for solving weakly singular integral equations of the second kind
    Kangro, R.
    Kangro, I.
    MATHEMATICAL MODELLING AND ANALYSIS, 2008, 13 (01) : 29 - 36
  • [44] Fibonacci-regularization method for solving Cauchy integral equations of the first kind
    Araghi, Mohammad Ali Fariborzi
    Noeiaghdam, Samad
    AIN SHAMS ENGINEERING JOURNAL, 2017, 8 (03) : 363 - 369
  • [45] Modified homotopy perturbation method for solving hypersingular integral equations of the first kind
    Eshkuvatov, Z. K.
    Zulkarnain, F. S.
    Long, N. M. A. Nik
    Muminov, Z.
    SPRINGERPLUS, 2016, 5
  • [46] On polynomial collocation for second kind integral equations with fixed singularities of Mellin type
    G. Mastroianni
    C. Frammartino
    A. Rathsfeld
    Numerische Mathematik, 2003, 94 : 333 - 365
  • [47] JUSTIFICATION OF COLLOCATION METHOD FOR ONE CLASS OF SYSTEMS OF CURVILINEAR INTEGRAL EQUATIONS
    Khalilov, Elnur H.
    Sharbatzadeh, Matanat G.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2023, 49 (02): : 243 - 252
  • [48] A convergence rate for approximate solutions of Fredholm integral equations of the first kind
    Lin, Shaobo
    Cao, Feilong
    Xu, Zongben
    POSITIVITY, 2012, 16 (04) : 641 - 652
  • [49] Numerical analysis of a collocation method for functional integral equations
    Rocha, Adson M.
    Azevedo, Juarez S.
    Oliveira, Saulo P.
    Correa, Maicon R.
    APPLIED NUMERICAL MATHEMATICS, 2018, 134 : 31 - 45
  • [50] Collocation method for Generalized Abel's integral equations
    Pandey, Rajesh K.
    Sharma, Shiva
    Kumar, Kamlesh
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 302 : 118 - 128