Effects of coronal mass ejections on distant coronal streamers

被引:0
作者
B. P. Filippov
P. Kayshap
A. K. Srivastava
O. V. Martsenyuk
机构
[1] IZMIRAN,Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation
[2] Aryabhatta Research Institute of Observational Sciences,Department of Physics
[3] Indian Institute of Technology (Banaras Hindu University),undefined
来源
Astronomy Reports | 2014年 / 58卷
关键词
Coronal Mass Ejection; Solar Phys; Astronomy Report; Coronal Streamer; Kink Wave;
D O I
暂无
中图分类号
学科分类号
摘要
The effects of a large coronal mass ejection (CME) on a solar coronal streamer located roughly 90° from the main direction of the CME propagation observed on January 2, 2012 by the SOHO/LASCO coronograph are analyzed. Radial coronal streamers undergo some bending when CMEs pass through the corona, even at large angular distances from the streamers. The phenomenon resembles a bending wave traveling along the streamer. Some researchers interpret these phenomena as the effects of traveling shocks generated by rapid CMEs, while others suggest they are waves excited inside the streamers by external impacts. The analysis presented here did not find convincing arguments in favor of either of these interpretations. It is concluded that the streamer behavior results from the effect of the magnetic field of a moving magnetic flux rope associated with the coronal ejection. The motion of the large-scale magnetic flux rope away from the Sun changes the surrounding magnetic field lines in the corona, and these changes resemble the half-period of a wave running along the streamer.
引用
收藏
页码:578 / 586
页数:8
相关论文
共 50 条
[41]   Large solar flares and coronal mass ejections: Their manifestations in the chromosphere [J].
V. I. Sidorov ;
S. A. Yazev .
Geomagnetism and Aeronomy, 2009, 49 :1076-1079
[42]   Cluster of solar active regions and onset of coronal mass ejections [J].
JingXiu Wang ;
YuZong Zhang ;
Han He ;
AnQin Chen ;
ChunLan Jin ;
GuiPing Zhou .
Science China Physics, Mechanics & Astronomy, 2015, 58
[43]   Interplanetary Coronal Mass Ejections During Solar Cycle 23 [J].
Richardson, Ian G. ;
Cane, Hilary V. .
TWELFTH INTERNATIONAL SOLAR WIND CONFERENCE, 2010, 1216 :683-686
[44]   An Attempt to Detect Coronal Mass Ejections in Lyman-α Using SOHO Swan [J].
M. L. Mays ;
O. C. St. Cyr ;
E. Quémerais ;
S. Ferron ;
J.-L. Bertaux ;
S. Yashiro ;
R. Howard .
Solar Physics, 2007, 241 :113-125
[45]   Properties of Interplanetary Coronal Mass Ejections at One AU During 1995 – 2004 [J].
L. Jian ;
C. T. Russell ;
J. G. Luhmann ;
R. M. Skoug .
Solar Physics, 2006, 239 :393-436
[46]   Constraining the Kinematics of Coronal Mass Ejections in the Inner Heliosphere with In-Situ Signatures [J].
T. Rollett ;
C. Möstl ;
M. Temmer ;
A. M. Veronig ;
C. J. Farrugia ;
H. K. Biernat .
Solar Physics, 2012, 276 :293-314
[47]   Global destabilization due to localized reconnection: A mechanism for coronal mass ejections [J].
P. F. Chen ;
K. Shibata ;
T. Yokoyama .
Earth, Planets and Space, 2001, 53 :611-614
[48]   Solar filament eruptions and their physical role in triggering coronal mass ejections [J].
Schmieder, B. ;
Demoulin, P. ;
Aulanier, G. .
ADVANCES IN SPACE RESEARCH, 2013, 51 (11) :1967-1980
[49]   Detection of coronal mass ejections using AdaBoost on grayscale statistic features [J].
Zhang, Ling ;
Yin, Jian-qin ;
Lin, Jia-ben ;
Wang, Xiao-fan ;
Guo, Juan .
NEW ASTRONOMY, 2016, 48 :49-57
[50]   Automatic Detection and Tracking of Coronal Mass Ejections in Coronagraph Time Series [J].
O. Olmedo ;
J. Zhang ;
H. Wechsler ;
A. Poland ;
K. Borne .
Solar Physics, 2008, 248 :485-499