Geometry of dual spaces of affine-metric connection

被引:0
作者
Alenina T.G. [1 ]
机构
[1] Chuvash State Pedagogical University, Cheboksary
关键词
Manifold; Dual Space; Curvature Tensor; Connection Form; Tensor Analysis;
D O I
10.1007/s10958-011-0478-4
中图分类号
学科分类号
摘要
In this work, we consider the dual geometry of a normalized space of affine connection An,n. In particular, we study the dual spaces of an affine-metric connection, which are induced by a nondegenerate normalization of a space of affine-metric connection Mn,n. © 2011 Springer Science+Business Media, Inc.
引用
收藏
页码:541 / 545
页数:4
相关论文
共 8 条
  • [1] Laptev G.F., On the selection of one class of inttinsic geometries induced on a surface of space of affine connection, Dokl. Akad. Nauk SSSR, 41, 8, pp. 329-331, (1943)
  • [2] Laptev G.F., Differential geometry of immersed manifolds, Tr. Mosk. Mat. Obshch., 2, pp. 275-382, (1953)
  • [3] Norden A.P., Spaces of Affine Connection [in Russian], (1976)
  • [4] Rashevsky P.K., Riemannian Geometry and Tensor Analysis [in Russian], (1967)
  • [5] Stolyarov A.V., Dual Theory of Normalized Manifolds [in Russian], (1994)
  • [6] Stolyarov A.V., Space of projective-metric connection, Izv. Vyssh. Uchebn. Zaved., Mat, 11, pp. 70-76, (2003)
  • [7] Stolyarov A.V., Dual geometry of the normalized space of affine connection, Vestn. Chuvash. Gos. Ped. Univ., 4, pp. 21-27, (2005)
  • [8] Stolyarov A.V., Affine-metric connection, Vestn. Chuvash. Gos. Ped. Univ., 5, pp. 158-167, (2006)