Primal-dual Interior-point Algorithms for Second-order Cone Optimization Based on a New Parametric Kernel Function

被引:0
作者
Yan Qin Bai
Guo Qiang Wang
机构
[1] Shanghai University,Department of Mathematics, College of Sciences
[2] Shanghai University of Engineering Science,College of Vocational Technology
来源
Acta Mathematica Sinica, English Series | 2007年 / 23卷
关键词
second-order cone optimization; linear optimization; interior-point methods; large- and small-update methods; polynomial-time complexity; 60K05; 90C51;
D O I
暂无
中图分类号
学科分类号
摘要
A class of polynomial primal-dual interior-point algorithms for second-order cone optimization based on a new parametric kernel function, with parameters p and q, is presented. Its growth term is between linear and quadratic. Some new tools for the analysis of the algorithms are proposed. The complexity bounds of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ O{\left( {{\sqrt N }\log N\log \frac{N} {\varepsilon }} \right)} $$\end{document} for large-update methods and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ O{\left( {{\sqrt N }\log \frac{N} {\varepsilon }} \right)} $$\end{document} for small-update methods match the best known complexity bounds obtained for these methods. Numerical tests demonstrate the behavior of the algorithms for different results of the parameters p and q.
引用
收藏
页码:2027 / 2042
页数:15
相关论文
共 11 条
[1]  
Wang undefined(2005)undefined Journal of Mathematical Modelling and Algorithms 4 409-undefined
[2]  
Huang undefined(2006)undefined Acta Mathematica Sinica, English Series 22 1283-undefined
[3]  
Lobo undefined(1998)undefined Linear Algebra and Applications 284 193-undefined
[4]  
Andersen undefined(2003)undefined Mathematical Programming Ser. B 95 249-undefined
[5]  
Faybusovich undefined(1997)undefined Journal of Computational and Applitied Mathematics 86 149-undefined
[6]  
Monteiro undefined(2000)undefined Mathematical Progamming 88 61-undefined
[7]  
Nesterov undefined(1998)undefined SIAM Journal on Optimization 8 324-undefined
[8]  
Schmieta undefined(2001)undefined Mathematics of Operation Research 26 543-undefined
[9]  
Tsuchiya undefined(1999)undefined Optimization Mehtods & Software 11 141-undefined
[10]  
Bai undefined(2004)undefined SIAM Journal on Optimization 15 101-undefined