Correction of metrics

被引:5
作者
P. B. Zatitskiy
F. V. Petrov
机构
[1] St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg
[2] P. L. Chebyshev Laboratory of St. Petersburg State University, St. Petersburg
关键词
Measure Space; Triangle Inequality; Lebesgue Space; Nonnegative Function;
D O I
10.1007/s10958-012-0720-8
中图分类号
学科分类号
摘要
We prove that a symmetric nonnegative function of two variables on a Lebesgue space that satisfies the triangle inequality for almost all triples of points is equivalent to some semimetric. Some other properties of metric triples (spaces with structures of a measure space and a metric space) are discussed. Bibliography: 4 titles. © 2012 Springer Science+Business Media, Inc.
引用
收藏
页码:867 / 870
页数:3
相关论文
共 4 条
[1]  
Halmos P.R., von Neumann J., Operator methods in classical mechanics. II, Ann. Math., 43, 2, pp. 332-350, (1942)
[2]  
Gromov M., Metric Structures for Riemannian and Non-Riemannian Spaces, (1999)
[3]  
Vershik A.M., The universal Uryson space, Gromov's metric triples, and random metrics on the series of natural numbers, Russian Math. Surveys, 53, 5, pp. 921-928, (1998)
[4]  
Vershik A., Scaling entropy and automorphisms with purely point spectrum