Global Hopf Bifurcation for Differential-Algebraic Equations with State-Dependent Delay

被引:0
作者
Qingwen Hu
机构
[1] The University of Texas at Dallas,Department of Mathematical Sciences
来源
Journal of Dynamics and Differential Equations | 2019年 / 31卷
关键词
State-dependent delay; Hopf bifurcation; Differential-algebraic equations; -equivariant degree; Regulatory dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a global Hopf bifurcation theory for differential equations with a state-dependent delay governed by an algebraic equation, using the S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^1$$\end{document}-equivariant degree. We apply the global Hopf bifurcation theory to a model of genetic regulatory dynamics with threshold type state-dependent delay vanishing at the stationary state, for a description of the global continuation of the periodic oscillations.
引用
收藏
页码:93 / 128
页数:35
相关论文
共 26 条
[1]  
Balanov Z(2014)Global Hopf bifurcation of differential equations with threshold-type state-dependent delay J. Differ. Equ. 257 2622-2670
[2]  
Hu Q(1996)On the problem of linearization for state-dependent delay differential equations Proc. Am. Math. Soc. 124 1417-1426
[3]  
Krawcewicz W(1965)Oscillatory behavior in enzymatic control processes Adv. Enzym. Regul. 3 425-438
[4]  
Cooke K(2010)Global Hopf bifurcation for differential equations with state-dependent delay J. Differ. Equ. 248 2801-2840
[5]  
Huang W(2007)State-dependent delay in regenerative turning processes Nonlinear Dyn. 47 275-283
[6]  
Goodwin B(1982)Snakes: oriented families of periodic orbits, their sources, sinks, and continuation J. Differ. Equ. 43 419-450
[7]  
Hu Q(1992)Boundary layer phenomena for differential-delay equations with state-dependent time lags, I Arch. Ration. Mech. Anal. 120 99-146
[8]  
Wu J(1996)Boundary layer phenomena for differential-delay equations with state dependent time lags: II J. Reine Angew. Math. 477 129-197
[9]  
Insperger T(2003)Boundary layer phenomena for differential-delay equations with state-dependent time lags: III J. Differ. Equ. 189 640-692
[10]  
Stépán G(1999)The Fredholm alternative for functional differential equations of mixed type J. Dyn. Differ. Equ. 11 1-47