Electrically gauged \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=4 $\end{document} supergravities in D = 4 with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=2 $\end{document} vacua

被引:0
作者
Christoph Horst
Jan Louis
Paul Smyth
机构
[1] II. Institut für Theoretische Physik der Universität Hamburg,Zentrum für Mathematische Physik
[2] Universität Hamburg,undefined
[3] Institut de Théorie des Phénomènes Physiques,undefined
[4] EPFL,undefined
关键词
Supersymmetry Breaking; Extended Supersymmetry; Supergravity Models; Supersymmetric Effective Theories;
D O I
10.1007/JHEP03(2013)144
中图分类号
学科分类号
摘要
We study \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=2 $\end{document} vacua in spontaneously broken \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=4 $\end{document} electrically gauged supergravities in four space-time dimensions. We argue that the classification of all such solutions amounts to solving a system of purely algebraic equations. We then explicitly construct a special class of consistent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=2 $\end{document} solutions and study their properties. In particular we find that the spectrum assembles in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=2 $\end{document} massless or BPS supermultiplets. We show that (modulo U(1) factors) arbitrary unbroken gauge groups can be realized provided that the number of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=4 $\end{document} vector multiplets is large enough. Below the scale of partial supersymmetry breaking we calculate the relevant terms of the low-energy effective action and argue that the special Kähler manifold for vector multiplets is completely determined, up to its dimension, and lies in the unique series of special Kähler product manifolds.
引用
收藏
相关论文
共 76 条
[1]  
Witten E(1981)Dynamical breaking of supersymmetry Nucl. Phys. B 188 513-undefined
[2]  
Cecotti S(1984)Two into one won’t go Phys. Lett. B 145 61-undefined
[3]  
Girardello L(1986)Constraints on partial superHiggs Nucl. Phys. B 268 295-undefined
[4]  
Porrati M(1994)Matter couplings in partially broken extended supersymmetry Phys. Lett. B 336 25-undefined
[5]  
Cecotti S(1996)Spontaneous breaking of Phys. Lett. B 372 83-undefined
[6]  
Girardello L(1996) = 2 global supersymmetry Phys. Lett. B 366 155-undefined
[7]  
Porrati M(1996)Minimal Higgs branch for the breaking of half of the supersymmetries in Phys. Lett. B 376 275-undefined
[8]  
Bagger J(1997) = 2 supergravity Nucl. Phys. B 493 231-undefined
[9]  
Galperin A(2010)Spontaneous breaking of JHEP 02 103-undefined
[10]  
Antoniadis I(2010) = 2 to JHEP 10 017-undefined