On invariance of some classes of holomorphic functions under integrodifferential operators

被引:0
作者
Shamoyan F.A. [1 ]
Kursina I.S. [1 ]
机构
基金
俄罗斯基础研究基金会;
关键词
Holomorphic Function; Unit Disk; Positive Function; Nevanlinna Characteristic; Integrodifferential Operator;
D O I
10.1023/A:1012401019352
中图分类号
学科分类号
摘要
The following classes of functions analytic in the unit disk are considered: Nωp - (∫01 ω(1-r)Tp(f, r)dr)1/p+∞) and Ñωp = (f ε ∈ H(D): ∫0- ∫-ππ ω(1-r)(log+|f(reiφ)|)p rdrdφ < + ∞), where T(f, r) = 1/2π ∫-ππ log+|∫(reiφ)|dφ is the Nevanlinna characteristic and ω is a properly changing positive function on (0, 1]. Necessary and sufficient conditions on ω are established under which the classes Nωp and Ñωp are invariant under the operators of differentiation and integration. © 2001 Plenum Publishing Corporation.
引用
收藏
页码:4097 / 4107
页数:10
相关论文
共 45 条
[21]   SOME ESTIMATES FOR HOLOMORPHIC FUNCTIONS AT THE BOUNDARY OF THE UNIT DISC [J].
Ornek, B. N. .
KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (03) :475-485
[22]   Parametric representation and description for the root sets of weighted classes of holomorphic functions in the disk [J].
F. A. Shamoyan .
Siberian Mathematical Journal, 1999, 40 :1211-1229
[24]   A boundedness criterion for Toeplitz operators in weighted Sobolev spaces of holomorphic functions on the polydisk [J].
F. A. Shamoyan .
Siberian Mathematical Journal, 2012, 53 (3) :554-572
[25]   A BOUNDEDNESS CRITERION FOR TOEPLITZ OPERATORS IN WEIGHTED SOBOLEV SPACES OF HOLOMORPHIC FUNCTIONS ON THE POLYDISK [J].
Shamoyan, F. A. .
SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (03) :554-572
[26]   Shilov boundary for holomorphic functions on some classical Banach spaces [J].
Acosta, Maria D. ;
Lourenco, Mary Lilian .
STUDIA MATHEMATICA, 2007, 179 (01) :27-39
[27]   SUBSEQUENCES OF ZEROS FOR CLASSES OF HOLOMORPHIC FUNCTIONS, THEIR STABILITY, AND THE ENTROPY OF ARCWISE CONNECTEDNESS. I [J].
Khabibullin, B. N. ;
Khabibullin, F. B. ;
Cherednikova, L. Yu. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2009, 20 (01) :101-129
[28]   Sharp estimates of best approximations in terms of holomorphic functions of weierstrass-type operators [J].
Vinogradov O.L. .
Journal of Mathematical Sciences, 2013, 193 (1) :8-31
[29]   Some results for a certain class of holomorphic functions at the boundary of the unit disc [J].
Ornek, Bulent Nafi ;
Akyel, Tugba .
INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2018), 2019, 2086
[30]   Some local contour-solid theorems for finely holomorphic functions [J].
Sarana A.A. .
Ukrainian Mathematical Journal, 2002, 54 (12) :2038-2046