Minimal subshifts which display Schweizer-Smítal chaos and have zero topological entropy

被引:57
作者
Liao Gongfu
Fan Qinjie
机构
[1] Jilin University,Department of Mathematics
[2] Siping Teachers College,Department of Mathematics
来源
Science in China Series A: Mathematics | 1998年 / 41卷 / 1期
关键词
compact system; subshlft; Schweizer-Smital chaos; topological entropy; minimal set;
D O I
10.1007/BF02900769
中图分类号
学科分类号
摘要
A class of minimal subshifts which display Schweizer-Smital chaos and have zero topotogical entropy is constructed, and it is proved that for a compact system, the positive topological entropy is not generally equivalent to Schweizer-Smital chaos occurring on the measure centre.
引用
收藏
页码:33 / 38
页数:5
相关论文
共 16 条
[1]  
Li T. Y.(1975)Period three implies chaos Amer. Math. Monthly 82 985-985
[2]  
Yorke J. A.(1994)Measures of chaos and a spectral decomposition of dynamical systems of the interval Trans. Amer. Math. Soc. 344 737-737
[3]  
Schweizer B.(1986)A chaotic map with topoiogical entropy 0 Acta Mathematica Scientia 6 439-439
[4]  
Smital J.(1986)A note on a chaotic map with topoiogical entropy 0 Northeastern Mathematical Journal 2 240-240
[5]  
Xiong J. C.(1988)Smooth chaotic maps with zero topoiogical entropy Erg. Th. & Dyn. Sys. 89 421-421
[6]  
Liao G. F.(1986)Chaotic functions with zero topoiogical entropy Trans. Amer. Math. Soc. 297 269-269
[7]  
Misurewicz M.(1993)Weakly almost periodic points and measure centre Science in China, Ser. A 36 142-142
[8]  
Smital J.(1994)The positive topoiogical entropy not equivalent to chaos—a class of subshifts Science in China 37 653-653
[9]  
Smítal J.(1944)Some remarks on almost periodic transformations Bull. Amer. Math. Soc. 50 915-915
[10]  
Zhou Z. L.(1945)Orbit-closure decompositions and almost periodic properties Bull. Amer. Math. Soc. 51 126-126