Relative Gröbner and Involutive Bases for Ideals in Quotient Rings

被引:0
作者
Amir Hashemi
Matthias Orth
Werner M. Seiler
机构
[1] Isfahan University of Technology,Department of Mathematical Sciences
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
[3] Universität Kassel,Institut für Mathematik
来源
Mathematics in Computer Science | 2021年 / 15卷
关键词
Polynomial rings; Quotient rings; Ideals; Gröbner bases; Syzygy module; Involutive bases; Quasi-stable ideals; 13P10; 13D02; 68W30;
D O I
暂无
中图分类号
学科分类号
摘要
We extend the concept of Gröbner bases to relative Gröbner bases for ideals in and modules over quotient rings of a polynomial ring over a field. We develop a “relative” variant of both Buchberger’s criteria for avoiding reductions to zero and Schreyer’s theorem for a Gröbner basis of the syzygy module. As main contribution, we then introduce the novel notion of relative involutive bases and present an algorithm for their explicit construction. Finally, we define the new notion of relatively quasi-stable ideals and exploit it for the algorithmic determination of coordinates in which finite relative Pommaret bases exist.
引用
收藏
页码:453 / 482
页数:29
相关论文
共 26 条
[1]  
Ceria M(2017)Buchberger–Weispfenning theory for effective associative rings J. Symb. Comput. 83 112-146
[2]  
Mora T(2020)Toward involutive bases over effective rings Appl. Algebra Eng. Commun. Comput. 31 359-387
[3]  
Ceria M(1999)A new efficient algorithm for computing Gröbner bases J. Pure Appl. Algebra 139 61-88
[4]  
Mora T(2016)A new framework for computing Gröbner bases Math. Comput. 85 449-465
[5]  
Faugère J-C(1998)Involutive bases of polynomial ideals Math. Comput. Simul. 45 519-541
[6]  
Gao S(1998)Minimal involutive bases Math. Comput. Simul. 45 543-560
[7]  
Volny FIV(2018)Deterministic genericity for polynomial ideals J. Symb. Comput. 86 20-50
[8]  
Wang M(2002)An efficient algebraic algorithm for the geometric completion to involution Appl. Alg. Eng. Commun. Comput. 13 163-207
[9]  
Gerdt VP(2009)An algorithm for computing a Gröbner basis of a polynomial ideal over a ring with zero divisors Math. Comput. Sci. 2 601-634
[10]  
Blinkov YA(2020)Zacharias representation of effective associative rings J. Symb. Comput. 99 147-188