q-Deformed hyperbolic tangent based Banach space valued ordinary and fractional neural network approximations

被引:0
作者
George A. Anastassiou
机构
[1] University of Memphis,Department of Mathematical Sciences
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2023年 / 117卷
关键词
-Deformed hyperbolic tangent function; Banach space valued neural network approximation; Banach space valued quasi-interpolation operator; Modulus of continuity; Banach space valued Caputo fractional derivative; Banach space valued fractional approximation; 26A33; 41A17; 41A25; 41A30; 46B25;
D O I
暂无
中图分类号
学科分类号
摘要
Here we research the univariate quantitative approximation, ordinary and fractional, of Banach space valued continuous functions on a compact interval or all the real line by quasi-interpolation Banach space valued neural network operators. These approximations are derived by establishing Jackson type inequalities involving the modulus of continuity of the engaged function or its Banach space valued high order derivative of fractional derivatives. Our operators are defined by using a density function generated by a q-deformed hyperbolic tangent function, which is a sigmoid function. The approximations are pointwise and of the uniform norm. The related Banach space valued feed-forward neural networks are with one hidden layer.
引用
收藏
相关论文
共 15 条
  • [1] Anastassiou GA(1997)Rate of convergence of some neural network operators to the unit-univariate case J. Math. Anal. Appl. 212 237-262
  • [2] Anastassiou GA(2011)Univariate hyperbolic tangent neural network approximation Math. Comput. Modell. 53 1111-1132
  • [3] Anastassiou GA(2011)Multivariate hyperbolic tangent neural network approximation Comput. Math. 61 809-821
  • [4] Anastassiou GA(2011)Multivariate sigmoidal neural network approximation Neural Netw. 24 378-386
  • [5] Anastassiou GA(2012)Univariate sigmoidal neural network approximation J. Comput. Anal. Appl. 14 659-690
  • [6] Anastassiou GA(2012)Fractional neural network approximation Comput. Math. Appl. 64 1655-1676
  • [7] Anastassiou GA(2017)Strong right fractional calculus for Banach space valued functions Rev. Proyecciones 36 149-186
  • [8] Anastassiou GA(2017)Vector fractional Korovkin type approximations Dyn. Syst. Appl. 26 81-104
  • [9] Anastassiou GA(2017)A strong fractional calculus theory for Banach space valued functions Nonlinear Funct. Anal. Appl. 22 495-524
  • [10] Chen Z(2009)The approximation operators with sigmoidal functions Comput. Math. Appl. 58 758-765