Complex Valued Spectral Hermite Approximations for the Actively Mode-Locked Laser

被引:0
作者
Kelly Black
John B. Geddes
机构
[1] Union College,Department of Mathematics
[2] Franklin W. Olin College of Engineering,undefined
来源
Journal of Scientific Computing | 2007年 / 32卷
关键词
Hermite polynomials; Mode-locked laser; Spectral method;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a numerical approximation of the governing equations of an actively mode-locked laser. The governing equation is complex valued and a novel scaling is employed that is designed to simplify the associated line integral in the complex plane. The resulting approximation is based on a set of shifted Hermite polynomials on an infinite line. Numerical comparisons are given with a finite difference scheme on a mapped domain as well as a finite element method on a truncated domain.
引用
收藏
页码:427 / 448
页数:21
相关论文
共 53 条
[1]  
Bayliss A.(1982)Boundary conditions for the numerical solution of elliptic equations in exterior regions SIAM J. Appl. Math. 42 430-451
[2]  
Gunzburger M.(2000)Time-domain master equation for pulse evolution and laser mode-locking Opt. Quantum Electron. 32 1131-1146
[3]  
Turkel E.(1998)Mapped spheroidal wave-envelope elements for unbounded wave problems Int. J. Numer. Methods Eng. 41 1235-1254
[4]  
Dunlop A.M.(2003)Spectral and pseudospectral approximations using hermite functions: applications to the dirac equation Adv. Comput. Math. 19 35-55
[5]  
Firth W.J.(1998)Spectral elements on infinite domains SIAM J. Sci. Comput. 19 1667-1681
[6]  
Wright E.M.(2000)Sub-6-fs pulses from a SESAM-assisted Kerr-lens modelocked Ti:sapphire laser: at the frontiers of ultrashort pulse generation Appl. Phys. B 70 S5-S12
[7]  
Astley R.J.(2005)The fast Gauss transform with complex parameters J. Comput. Phys. 203 274-286
[8]  
Guo B.Y.(1999)Turbulence in mode-locked lasers Phys. Rev. Lett. 82 4428-4431
[9]  
Shen J.(1981)The finite element method with nonuniform mesh sizes for unbounded domains Math. Comput. 36 387-404
[10]  
Black K.(1999)Error estimation of Hermite spectral method for nonlinear partial differential equations Math. Comput. 68 1067-1078