Entropy generation optimization in a radiative hybrid nanofluid (engine oil + NiZnFe2O4 + MnZnFe2O4) flow through a convectively heated microchannel with cross-diffusion effects

被引:0
作者
Darapuneni P. C. Rao
M. Jayachandra Babu
S. A. Shehzad
S. Qaisar
机构
[1] Matrusri Engineering College,Department of Mathematics
[2] S.V.A Government College,Department of Mathematics
[3] COMSATS University Islamabad,Department of Mathematics
来源
Journal of Thermal Analysis and Calorimetry | 2023年 / 148卷
关键词
Hybrid nanofluid; Microchannel; Entropy generation; Soret–Dufour numbers; Chemical reaction;
D O I
暂无
中图分类号
学科分类号
摘要
The vertical microchannels phenomenon is useful in the cooling process of microelectronic devices, fuel cells and MHD (magnetohydrodynamic) micro-pumps. The understanding of this phenomenon makes these flows crucial in industries and engineering products. Objective of this paper is how Dufour, Soret and chemical reaction affect the characteristics of hybrid nanofluid (engine oil + manganese zinc ferrite ((MnZnFe2O4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\text{MnZnFe}}_{2} {\text{O}}_{4} )$$\end{document} + nickel zinc ferrite (NiZnFe2O4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\text{NiZnFe}}_{2} {\text{O}}_{4} )$$\end{document})) flow in a microchannel with two vertical parallel plates. The irreversibility analysis is considered. The bvp4c solver in MATLAB is implemented to compute the transformed system derived from the equations used to describe the present problem. The heat transfer rate and other physical parameters of relevance near both plates are explained using graphs. It has been observed that as the Brinkman number and Dufour numbers increased, the entropy production rate is significantly changed. It is noticed that there is a reduction in Bejan number with the escalation in volume fraction of NiZnFe2O4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{NiZnFe}}_{2} {\text{O}}_{4}$$\end{document} (ϕNi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi_{{{\text{Ni}}}}$$\end{document}). The skin-friction factor declined with the rate of 0.03114 at 0≤Mn≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le {\text{Mn}} \le 3$$\end{document} (near left plate) and decreased in the friction factor is 2.45896 when ϕNi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi_{{{\text{Ni}}}}$$\end{document} is in the range 0≤ϕNi≤0.09\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le \phi_{{{\text{Ni}}}} \le 0.09$$\end{document} (near right plate). It is detected that when Dufour number (Du\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Du}}$$\end{document}) is at 0≤Du≤0.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le {\text{Du}} \le 0.6$$\end{document}, heat transmission rate cuts down by 0.06935 (near the left plate). Sherwood number risen by 0.043153 (near the left plate) when Soret number (Sr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Sr}}$$\end{document}) is set to 0≤Sr≤0.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le {\text{Sr}} \le 0.6$$\end{document}.
引用
收藏
页码:10907 / 10916
页数:9
相关论文
共 156 条
[1]  
Ho CJ(2011)On laminar convective cooling performance of hybrid water-based suspensions of Al Int J Heat Mass Transf 54 2397-2407
[2]  
Huang JB(2013)O Chem Eng Commun 200 878-894
[3]  
Tsai PS(2014) nanoparticles and MEPCM particles in a circular tube Procedia Eng 97 1667-1675
[4]  
Yang YM(2014)Numerical study of developed laminar mixed convection of Al Appl Phys A 117 1821-1833
[5]  
Izadi MM(2015)O Int J Comput Methods Eng Sci Mech 16 11-21
[6]  
Shahmardan MM(2017)/water nanofluid in an annulus Defect Diffus Forum 377 42-61
[7]  
Maghrebi MJ(2017)Experimental analysis of hybrid nanofluid as a coolant Int J Numer Meth Heat Fluid Flow 27 2259-2267
[8]  
Behzadmehr A(2019)Cooling performance of a nanofluid flow in a heat sink microchannel with axial conduction effect Symmetry 11 663-9
[9]  
Madhesh D(2018)Effects of inclination angle on mixed convection heat transfer of a nanofluid in a square cavity Eur Phys J E 41 1-455
[10]  
Kalaiselvam S(2020)MHD flow of Cu–Al Powder Technol 367 443-458