Spacelike hypersurfaces with constant rth mean curvature in steady state type spacetimes

被引:3
作者
Aquino C.P. [1 ]
de Lima H.F. [2 ]
dos Santos F.R. [2 ]
Velásquez M.A.L. [2 ]
机构
[1] Departamento de Matemática, Universidade Federal do Piauí, Teresina, 64.049-550, Piauí
[2] Departamento de Matemática, Universidade Federal de Campina Grande, Campina Grande, 58.429-970, Paraíba
关键词
53C50; 53Z05; 83C99; Primary; 53C42; Secondary; 53B30;
D O I
10.1007/s00022-014-0234-2
中图分类号
学科分类号
摘要
We deal with spacelike hypersurfaces immersed with some constant rth mean curvature in a steady state type spacetime, that is, a generalized Robertson–Walker spacetime of the type –ℝ×etMn In this setting, supposing that the fiber Mn of the ambient space has nonnegative constant sectional curvature, we establish characterization results concerning domains of the spacelike slices {t} × Mn Afterwards, we apply such characterization results to study the uniqueness of complete spacelike hypersurfaces with one end in such a ambient space. © 2014, Springer Basel AG.
引用
收藏
页码:85 / 96
页数:11
相关论文
共 27 条
[1]  
Albujer A.L., Alias L.J., Spacelike hypersurfaces with constant mean curvature in the steady state space, Proc. Am. Math. Soc., 137, pp. 711-721, (2009)
[2]  
Alias L.J., Brasil A., Colares A.G., Integral formulae for spacelike hypersurfaces in conformally stationary spacetimes and applications. Proc. Edinburgh, Math. Soc, 46, pp. 465-488, (2003)
[3]  
Alias L.J., Colares A.G., Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker spacetimes, Math. Proc. Cambridge Philos. Soc., 143, pp. 703-729, (2007)
[4]  
Alias L.J., Romero A., Sanchez M., Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson–Walker spacetimes, Gen. Relat. Gravit., 27, pp. 71-84, (1995)
[5]  
Alias L.J., Romero A., Sanchez M., Spacelike hypersurfaces of constant mean curvature and Calabi–Bernstein type problems, Tôhoku Math. J., 49, pp. 337-345, (1997)
[6]  
Aquino C.P., de Lima H.F., Uniqueness of complete hypersurfaces with bounded higher order mean curvatures in semi-Riemannian warped products, Glasgow Math. J., 54, pp. 201-212, (2012)
[7]  
Beem J.K., Ehrlich P.E., Easley K.L., Global Lorentzian Geometry, (1996)
[8]  
Bondi H., Gold T., On the generation of magnetism by fluid motion, Monthly Not. R. Astr. Soc., 108, pp. 252-270, (1948)
[9]  
Camargo F., Caminha A., de Lima H.F., Bernstein-type theorems in semi-Riemannian warped products, Proc. Am. Math. Soc., 139, pp. 1841-1850, (2011)
[10]  
Caminha A., A rigidity theorem for complete CMC hypersurfaces in Lorentz manifolds, Differ. Geom. Appl., 24, pp. 652-659, (2006)