Blow-up of sign-changing solutions of a quasilinear heat equation

被引:0
作者
S. I. Pokhozhaev
机构
[1] Russian Academy of Sciences,Steklov Mathematical Institute
来源
Differential Equations | 2011年 / 47卷
关键词
Cauchy Problem; Nonlinear Wave Equation; Quasilinear Parabolic Equation; Satisfying Inequality; Nonlinear Heat Equation;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of the blow-up of sign-changing solutions of the Cauchy problem for a quasilinear heat equation. The solutions are considered in a weighted function space that admits a certain growth of functions as |x| → ∞.
引用
收藏
页码:373 / 381
页数:8
相关论文
共 23 条
[1]  
Cazenave Th.(2009)Global Existence and Blow-Up for Sign-Changing Solutions of the Nonlinear Heat Equation J. Differential Equations 246 2669-2680
[2]  
Dickstein F.(2000)Fast Blow-Up Mechanisms for Sign-Changing Solutions of a Semilinear Parabolic Equation with Critical Nonlinearity Proc. R. Soc. Lond. Ser. A 456 2957-2982
[3]  
Weissler F.(1998)Blowup and Life Span of Solutions for a Semilinear Parabolic Equation SIAM J. Math. Anal. 29 1434-1446
[4]  
Filippas S.(1973)Some Nonexistence and Instability Theorems for Solutions of Formally Parabolic Equations of the Form Arch. Ration. Mech. Anal. 51 371-386
[5]  
Herero M.A.(1974) = Trans. Amer. Math. Soc. 192 1-21
[6]  
Velazquez J.J.L.(1974) + SIAM J. Math. Anal. 5 138-146
[7]  
Mizoguchi N.(1997)( Arch. Ration. Mech. Anal. 137 341-361
[8]  
Yanagida E.(1987)) J. Reine Angew. Math. 374 1-23
[9]  
Levine H.A.(1996)Instability and Nonexistence of Global Solutions to Nonlinear Wave Equations of the Form Commun. Pure Appl. Math. 49 177-216
[10]  
Levine H.A.(1998) = Israel J. Math. 104 29-50