Approximate iterations for structured matrices

被引:0
|
作者
Wolfgang Hackbusch
Boris N. Khoromskij
Eugene E. Tyrtyshnikov
机构
[1] Max-Planck-Institut für Mathematik in den Naturwissenschaften,Institute of Numerical Mathematics
[2] Russian Academy of Sciences,undefined
来源
Numerische Mathematik | 2008年 / 109卷
关键词
65F30; 65F50; 65N35; 65F10;
D O I
暂无
中图分类号
学科分类号
摘要
Important matrix-valued functions f (A) are, e.g., the inverse A−1, the square root \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sqrt{A}}$$\end{document} and the sign function. Their evaluation for large matrices arising from pdes is not an easy task and needs techniques exploiting appropriate structures of the matrices A and f (A) (often f (A) possesses this structure only approximately). However, intermediate matrices arising during the evaluation may lose the structure of the initial matrix. This would make the computations inefficient and even infeasible. However, the main result of this paper is that an iterative fixed-point like process for the evaluation of f (A) can be transformed, under certain general assumptions, into another process which preserves the convergence rate and benefits from the underlying structure. It is shown how this result applies to matrices in a tensor format with a bounded tensor rank and to the structure of the hierarchical matrix technique. We demonstrate our results by verifying all requirements in the case of the iterative computation of A−1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sqrt{A}}$$\end{document}.
引用
收藏
页码:365 / 383
页数:18
相关论文
共 50 条