Applications of Brain–Machine Interface Systems in Stroke Recovery and Rehabilitation

被引:0
作者
Venkatakrishnan A. [1 ]
Francisco G.E. [2 ,3 ]
L. Contreras-Vidal J. [1 ]
机构
[1] Laboratory for Non-invasive Brain–Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, TX
[2] Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, TX
[3] NeuroRecovery Research Center, TIRR Memorial Hermann Houston, Houston, TX
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Brain–machine interfaces; Clinical trials; Functional recovery; Neuroplasticity; Neurorehabilitation; Robotic exoskeletons; Robotic-assisted rehabilitation; Stroke;
D O I
10.1007/s40141-014-0051-4
中图分类号
学科分类号
摘要
Stroke is a leading cause of disability, significantly impacting the quality of life (QOL) in survivors, and rehabilitation remains the mainstay of treatment in these patients. Recent engineering and technological advances such as brain–machine interfaces (BMI) and robotic rehabilitative devices are promising to enhance stroke neurorehabilitation, to accelerate functional recovery and improve QOL. This review discusses the recent applications of BMI and robotic-assisted rehabilitation in stroke patients. We present the framework for integrated BMI and robotic-assisted therapies, and discuss their potential therapeutic, assistive and diagnostic functions in stroke rehabilitation. Finally, we conclude with an outlook on the potential challenges and future directions of these neurotechnologies, and their impact on clinical rehabilitation. © 2014, Springer Science + Business Media New York.
引用
收藏
页码:93 / 105
页数:12
相关论文
共 66 条
  • [1] Lloyd-Jones D., Adams R.J., Brown T.M., Carnethon M., Dai S., De Simone G., Ferguson T.B., Ford E., Furie K., Gillespie C., Go A., Greenlund K., Haase N., Hailpern S., Ho P.M., Howard V., Kissela B., Kittner S., Lackland D., Lisabeth L., Marelli A., McDermott M.M., Meigs J., Mozaffarian D., Mussolino M., Nichol G., Roger V.L., Rosamond W., Sacco R., Sorlie P., Stafford R., Thom T., Wasserthiel-Smoller S., Wong N.D., Wylie-Rosett J., Heart disease and stroke statistics—2010 update, Circulation, 1
  • [2] Velliste M., Perel S., Spalding M.C., Whitford A.S., Schwartz A.B., Cortical control of a prosthetic arm for self-feeding, Nature, 453, pp. 1098-1101, (2008)
  • [3] McDonald J.W., Sadowsky C.L., Stampas A., The changing field of rehabilitation: optimizing spontaneous regeneration and functional recovery, Handb Clin Neurol, 109, pp. 317-336, (2012)
  • [4] Dobkin B.H., Brain–computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation, J Physiol (Lond), 15, pp. 489-506, (2007)
  • [5] Moreno J.C., Ama A.J., Reyes-Guzman A., Gil-Agudo A., Ceres R., Pons J.L., Neurorobotic and hybrid management of lower limb motor disorders: a review, Med Biol Eng Comput, 49, (2011)
  • [6] Rossini P.M., Altamura C., Ferreri F., Melgari J.-M., Tecchio F., Tombini M., Pasqualetti P., Vernieri F., Neuroimaging experimental studies on brain plasticity in recovery from stroke, Eura Medicophys, 43, pp. 241-254, (2007)
  • [7] Zollo L., Gallotta E., Guglielmelli E., Sterzi S., Robotic technologies and rehabilitation: new tools for upper-limb therapy and assessment in chronic stroke, Eur J Phys Rehabil Med, 47, pp. 223-236, (2011)
  • [8] Yozbatiran N., Berliner J., O'Malley M.K., Pehlivan A.U., Kadivar Z., Boake C., Francisco G.E., Robotic training and clinical assessment of upper extremity movements after spinal cord injury: a single case report, J Rehabil Med, 44, pp. 186-188, (2012)
  • [9] Aranceta-Garza A., Kumpulainen S., Canela-Repuela M., Boere D., Coronado J.L., Egea T.G., Francisco G.E., Contreras-Vidal J.L., Neural Interfaces as Tools for Studying Brain Plasticity, P. N. Sabesa Biosystems & Biorobotics., pp. 89-101, (2013)
  • [10] Donchin E., Spencer K.M., Wijesinghe R., The mental prosthesis: assessing the speed of a P300-based brain-computer interface, IEEE Trans Rehabil Eng, 8, pp. 174-179, (2000)