A Wiener–Hopf operator on a Banach space of functions on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$${\mathbb{R}}^{+}$$
\end{document} is a bounded operator T such that P+S−aTSa = T, a ≥ 0, where Sa is the operator of translation by a. We obtain a representation theorem for the Wiener–Hopf operators on a large class of functions on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$${\mathbb{R}}^{+}$$
\end{document} with values in a separable Hilbert space.