Wiener–Hopf Operators on Spaces of Functions on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^{+}$$\end{document} with Values in a Hilbert Space

被引:0
作者
Violeta Petkova
机构
[1] Université Paul Sébatier,UFR: MIG, Laboratoire Emile Picard
关键词
Primary 47B38; Secondary 47B35; Wiener–Hopf operators; symbol; Fourier transformation; spectrum of translation operators;
D O I
10.1007/s00020-007-1530-0
中图分类号
学科分类号
摘要
A Wiener–Hopf operator on a Banach space of functions on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbb{R}}^{+}$$ \end{document} is a bounded operator T such that P+S−aTSa = T, a ≥ 0, where Sa is the operator of translation by a. We obtain a representation theorem for the Wiener–Hopf operators on a large class of functions on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbb{R}}^{+}$$ \end{document} with values in a separable Hilbert space.
引用
收藏
页码:355 / 378
页数:23
相关论文
empty
未找到相关数据